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TCP Performance Improvement Considering ACK Loss in
Ad Hoc Networks

Dongkyun Kim and Hongseok Yoo

Abstract: In mobile ad hoc networks, packet loss is unavoidable due
to MAC contention, link failure or the inherent characteristics of
wireless link. Since TCP relies on the timely reception of TCP ACK
packets to progress the transmission of the TCP DATA packets,
ACK loss obviously affects the performance due to two main prob-
lems: (a) Frequent occurrence of spurious retransmissions caused
by timeout events and (b) impairment of the fast retransmit mech-
anism caused by the lack of a sufficient number of duplicate ACK
packets. In particular, since most reactive routing protocols force
the packets buffered over a path to be discarded while perform-
ing a route recovery, the performance degradation becomes more
serious due to such ACK loss. In this paper, therefore, TCP with
two piggybacking schemes (called TCP-pgy) is proposed in order to
resolve the above-mentioned problems over reactive routing proto-
cols. Through extensive simulations using the ns-2 simulator, we
prove that our proposed schemes contribute to TCP performance
improvements.

Index Terms: Fast retransmit, mobile ad hoc network (MANET),
reactive routing protocol, spurious retransmission, TCP ACK loss.

I. INTRODUCTION

A mobile ad hoc network (MANET) is a wireless network
where all nomadic nodes with a fixed radio range are able to
communicate with each other without relying on network in-
frastructure. Since packet forwarding and routing is done via
intermediate nodes, the MANET working group in IETF [1]
has standardized ad hoc on-demand distance vector (AODV) [2]
and optimized link state routing (OLSR) [3] as its reactive and
proactive routing protocols, respectively. Moreover, the work-
ing group is currently trying to standardize dynamic Manet on-
demand (DYMO) [4] as its generalized reactive routing proto-
col. In proactive protocols, routing information to all possible
destinations in the network is maintained so that a packet can be
transmitted over an already-made routing path. In reactive pro-
tocols, a routing path is acquired in an on-demand manner when
a source desires to send packets to a destination. In addition, a
hybrid routing protocol like zone routing protocol (ZRP) [5] has
been proposed in order to support a large-scale, ad hoc network.

In addition to the network layer protocol, a transport proto-
col is also needed to provide end-to-end reliability between the
source and destination nodes. Thus, since transmission control
protocol (TCP) is widely used with the Internet and smooth inte-
gration with the fixed Internet is required, it is considered to be a
good candidate for transport protocol. Standard TCP that is tai-
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lored for the fixed Internet, however, cannot be directly applied
to MANETs because it does not differentiate between packet
loss caused by route failure and that caused by network conges-
tion. Therefore, a great deal of research has been conducted to
improve TCP performance.

Most research, however, has never considered the possibil-
ity that the TCP ACK packets can be easily lost while being
propagated to a TCP sender, due to wireless channel contention
or channel interference. Since the timely arrival of ACK pack-
ets allows a TCP sender to transmit more TCP DATA pack-
ets (through the so-called “ACK-clocking” technique), the ab-
sence of ACK packets (i.e., timeout events) causes the corre-
sponding TCP DATA packets to be retransmitted unnecessar-
ily, even when they have arrived at the destination node suc-
cessfully (called “spurious retransmissions”). Therefore, more
traffic injection, through spurious retransmissions, will aggra-
vate channel contention or interference, thus resulting in perfor-
mance degradation of all TCP flows in the network.

This paper therefore contributes to improving TCP perfor-
mance in MANETSs through two schemes: (a) Reducing spu-
rious retransmissions (S1 scheme) and (b) retransmitting a lost
TCP DATA packet in a timely manner (S2 scheme). Both S1 and
S2 schemes utilize piggybacking techniques of certain control
information onto transmitted packets. Hence, TCP with these
two schemes is called TCP-piggyback in this paper (abbreviated
by TCP-pgy).

To reduce spurious retransmissions, it is important to inform
a TCP sender of the sequence number expected by the TCP
receiver (i.e., ACK sequence). To support this, the S1 scheme
utilizes the underlying on-demand routing protocols such as
AODYV, dynamic source routing (DSR), and DYMO [1].

In these routing protocols, if packet loss occurs over a wire-
less link, the intermediate node which has experienced the loss
will notify the packet’s source node of a link failure. Thereafter,
the source node has to acquire a new path from itself to the desti-
nation node. Therefore, when a TCP ACK packet is lost, the net-
work layer of the TCP receiver will be notified of the link break-
age. It will try to acquire a new path toward the TCP sender. At
this time, a sequence number that the TCP receiver expects to
receive is piggybacked onto routing control packets. Therefore,
since the TCP sender can obtain the sequence number from its
network layer, it can avoid spurious retransmissions.

In addition, in the case of duplicate ACK packets, which are
needed to invoke the fast retransmit of a lost TCP DATA packet,
also being lost, the retransmission should depend on the time-
out mechanism at a TCP sender. Therefore, in order to notify
the TCP sender of the existence of such loss, and to allow a
TCP DATA packet to be retransmitted in a timely way, the S2
scheme piggybacks the occurrence number of duplication onto
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transmitted duplicate ACK packets. This avoids the dependency
on the timeout mechanism in order to retransmit the lost TCP
DATA packet.

With the goal of improving TCP performance in MANETS,
the proposed schemes will be able to supplement other TCP
proposals, which have all ignored ACK loss, to further improve
overall performance.

The rest of this paper is organized as follows: In Section II,
related work is presented, regarding the improvement of TCP
performance in MANETSs. TCP-pgy proposed in this paper is
introduced along with simulation observations in Section III. In
Section 1V, the performance of TCP-pgy is evaluated using the
ns-2 simulator. Finally, concluding remarks are offered in Sec-
tion V.

II. RELATED WORK

First, the basic operation of on-demand reactive routing pro-
tocols is described in brief. Second, some existing techniques
for improving TCP performance in MANETS are explained.

A. On-Demand Reactive Routing Protocols

Most on-demand reactive routing protocols such as AODV,
DSR and DYMO consist of two phases: (a) Route discovery and
(b) route maintenance. In the route discovery phase, a node (e.g.,
node A) initiates a route discovery when it wants to send data
packets to another node (e.g., node B), but does not have any
routing information regarding its destination. Node A floods an
RREQ (route request) packet and awaits an RREP (route reply)
packet from node B. Through the exchange of RREQ and RREP
packets, routing protocols such as AODV and DYMO allow the
routing entries for nodes A and B to be created at each interme-
diate node over a path between the two nodes. DSR, however,
enables node A to become aware of the list of intermediate nodes
visited toward node B and to transmit packets using the source
routing technique. For the reverse path (from node B to A), a
new route discovery may be initiated in the DSR protocol.

In the route maintenance phase, when an intermediate node
cannot forward a packet to a next-hop node due to a link break-
age, the node sends an RERR (route error) packet to the source
node of the packet (e.g., packet p). During the propagation of
the RERR packet, all buffered packets at each intermediate node
are dropped and discarded. When the RERR packet reaches the
source node of the packet p, the node will discover a new route
between itself and the destination for the packet p.

B. Works to Improve TCP Performance in MANETs

Mechanisms for improving TCP performance in MANETS
have been proposed because standard TCP itself, which is tai-
lored for the fixed Internet, cannot distinguish packet loss caused
by route failure from that brought about by network conges-
tion. Thus, it tends to drop its throughput by reducing its con-
gestion window size unnecessarily even when packet loss has
occurred due to route failure, rather than network congestion.
To avoid such throughput degradation, these approaches can be
categorized into two classes: (a) Preserving the end-to-end se-
mantics of TCP and (b) violating the end-to-end semantics of
TCP and requiring the intervention of intermediate nodes.

In the former approaches [8], [9], the TCP sender and receiver
attempt to differentiate between network congestion and route
failure without the intervention of intermediate nodes. In the lat-
ter schemes [10], [11], however, some messages, such as explicit
route failure and route recovery notification, or explicit conges-
tion notification, from any intermediate node that has detected
route failure or congestion, are used to allow a TCP sender to
be notified of different situations and to manage its congestion
window size accordingly. Since the latter approaches require the
participation of intermediate nodes, a great deal of modifica-
tion to the existing routing and transport protocols is unavoid-
able. All approaches have focused on how to differentiate be-
tween route failure and network congestion. In addition, some
approaches [13], [14] have been proposed to use the delayed
ACK technique efficiently, or to restrict the congestion window
to a small size in order to avoid excessive channel contention
and interference.

On the other hand, all of the aforementioned approaches have
not taken into consideration the fact that such ACK loss affects
TCP performance, namely, the importance of TCP ACK pack-
ets (see Section III-A). Thus, this paper attempts to address this
problem and propose solutions for improving TCP performance
by considering this ACK loss.

III. PROPOSED SCHEMES
A. Motivation

Using the ns-2 simulator [7], we first investigated the amount
of ACK loss using string topologies with a single TCP flow ac-
cording to hop distance of the flow, where the distance between
direct neighbor nodes, the transmission range of nodes and their
interference ranges were 200, 250, and 550 meters, respectively.
The first and last nodes in each string topology were set to source
and destination nodes for FTP traffic, with a duration of 600 sec-
onds. The underlying routing and MAC protocols were set to
AODYV and IEEE 802.11b for simulation purposes, respectively.
The average results were obtained for 100 runs.

In string topologies without node mobility, packet loss is a
result of the inefficiency of the 802.11 MAC protocol, which is
caused by capture effects or hidden terminal problem, not link
failures. Since the 802.11 MAC protocol, however, is known
to perform quite well within a 3-hop distances [13], our simu-
lations used exclude connections with less than 3-hop distance.
For the same reason, we also exclude those with less than a 3-
hop distance in Section I'V-B.

As shown in Fig. 1(a), although a difference in the amount
of TCP DATA and TCP ACK losses can be seen, we should
note that ACK loss occurs as much as DATA loss, regardless
of hop distance. In particular, for cases of more than 10 hops,
ACK loss is more significant than DATA loss. Since the TCP
ACK packets compete with TCP DATA packets for access to
their shared wireless medium, more TCP DATA packets occupy
the network than the TCP ACK packets because the size of the
TCP ACK packets is much smaller. Thus, the medium is loaded
more with TCP DATA packets, which result in the significant
amount of ACK loss [16].

Also, the amount of ACK losses using a 7-hop string topol-
ogy was investigated with multiple flows, not a single flow. In
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Fig. 1. The loss of TCP packets; (a) packet loss of a single flow, (b)
packet loss of multiple flows.

Fig. 1(b), we can see that both DATA and ACK losses are similar
and they grow as the number of TCP flows increases. Since mul-
tiple TCP flows create much contention and interference, more
losses can be observed.

TCP uses the DATA-ACK exchange in order to provide the
end-to-end data reliability. If TCP DATA packets have suc-
ceeded in reaching a TCP receiver, and their corresponding TCP
ACK packets are lost, the absence of these ACK packets will
cause a TCP sender to timeout and spuriously retransmit the
DATA packets. This results in performance degradation of mul-
tiple TCP flows due to contention and collisions.

Also, in most on-demand routing protocols, when an interme-
diate node fails to forward its ACK packet to a next-hop node, it
sends an RERR packet to the TCP receiver. During the propa-
gation of the RERR packet, intermediate nodes discard all ACK
packets buffered in their queues. Hence, this will result in exces-
sive spurious retransmissions due to the loss of multiple ACK
packets.

In addition, the fast retransmit technique of standard TCP re-
quires three duplicate ACK packets to arrive at the TCP sender
for the purpose of retransmitting a lost TCP DATA packet
quickly, without relying on the timeout mechanism. Hence, such
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Fig. 2. Route reply generation by an intermediate or destination node.

ACK loss prevents the TCP sender from performing the ex-
pected fast retransmit. Consequently, the TCP sender should
rely on the timeout mechanism to retransmit lost TCP DATA
packets.

The main goal of our proposed TCP, TCP-pgy, therefore, pro-
vides solutions to address the above-mentioned problems. In
particular, it also attempts to preserve the end-to-end semantics
of TCP without the intervention of intermediate nodes like ex-
plicit route or congestion-related notification.

B. Detailed Description

We introduce two schemes of TCP-pgy, which attempt to ad-
dress the two above-mentioned problems caused by ACK loss.
It is assumed that TCP operates over on-demand, reactive rout-
ing protocols.

B.1 Mechanism to Reduce Spurious Retransmissions (S1
Scheme)

In most on-demand reactive routing protocols, a path is ac-
quired between the source and destination nodes through the ex-
change of RREQ and RREP packets. During the flooding of an
RREQ packet, an RREP packet can be generated in one of two
ways: (a) A destination node only will respond to the RREQ
packet by unicasting an RREP packet back to the source, or (b)
an intermediate node which knows the path toward the destina-
tion is allowed to respond to the RREQ packet. DYMO proto-
col uses method ‘(a),” and others such as AODV and DSR use
method ‘(b).” Hence, a solution is proposed for each method,
respectively.

B.1.a Route Reply Generation by an Intermediate or Des-
tination Node. If a TCP ACK packet is lost over a wireless
link, a sending node detecting the loss will transmit an RERR
packet to the ad hoc routing entity of the TCP receiver. See (1) in
Fig. 2. On receiving the RERR packet, the ad hoc routing entity
of the TCP receiver will invoke a new route discovery by flood-
ing an RREQ packet. Before flooding the RREQ packet, the ad
hoc routing entity obtains the current sequence (i.e., ACK se-
quence) expected by the TCP receiver. See (2) in Fig. 2. Hence,
the ACK sequence is piggybacked onto the RREQ packet. See
(3) in Fig.2.

Next, consider the case where an intermediate node knows
of the path toward the destination. This intermediate node is al-
lowed to respond to the RREQ packet by unicasting an RREP
packet back to the TCP receiver node (if any). See (4) in
Fig. 2. Hence, a mechanism is needed to inform the TCP sender
of the ACK sequence.

In AODYV, the intermediate node generates a gratuitous RREP
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(called GRAT _RREP). This GRAT_RREP is sent toward the
TCP sender, in order to refresh the state of nodes along the
path. Refer to [2] for details. Therefore, the ACK sequence
will be piggybacked onto the GRAT_RREP packet. See (5) in
Fig. 2. Although DSR does not use such a GRAT_RREP packet,
a new routing control packet can be added to the DSR mecha-
nism through minor modification.

For the purpose of piggybacking the ACK sequence, the
RREQ and GRAT_RREP packets require an additional field,
called “ack_seq” (see Section I1I-C). On receiving the RREQ or
GRAT_RREP packet, the routing entity will toss the sequence
number to the TCP sender. See (6) in Fig. 2. Hence, a minimal
cross-layering approach is taken between network and transport
layers. Here, cross-layering involves the exchange of sequence
information between routing and transport layers, with minor
modifications to protocol stacks. Once informed of the sequence
number from the network layer, a TCP sender executes Algo-
rithm 1 (see below).

Suppose that a TCP sender has received an RREQ or
GRAT_RREP packet containing an ACK sequence. The
highest_ack represents the sequence number of the last packet
which was acknowledged by its TCP receiver. Hence, packets
with a sequence number greater than the highest_ack will be
buffered in the queue, until a new cumulative ACK packet ar-
rives.

In standard TCP, when a timeout event occurs, the TCP
sender retransmits packets whose sequence is larger than
the highest_ack by using the go-back-N mechanism. In our
scheme, however, if the ack_seq is larger than the highest_ack,
the highest_ack is updated to the ack_seq (see Algorithm 1).

Algorithm 1 Algorithm to avoid spurious retransmissions at a
TCP sender

highest_ack : The sequence number of the last packet which have been
successfully acknowledged by the TCP receiver

ack_seq : A cumulative ACK sequence number piggybacked on an RREQ
message

if (RREQ or GRAT_RREP Received) then
if (ack_seq > highest_ack) then
highest_ack = ack_seq;
end if
end if

Hence, the standard TCP sender would have retransmit-
ted the packets between the old highest_ack and the new
highest_ack spuriously. However, our scheme enables the TCP
sender to avoid these spurious retransmissions by updating the
highest_ack to the ack_seq before the timeout event occurs.

If a timeout occurs before a routing control packet (such as an
RREQ or GRAT_RREP) arrives at the TCP sender, our scheme
can still result in spurious retransmissions. Here, further re-
search is required.

B.1.b Route Reply Generation by Destination Node. Some
protocols (for example, DYMO) do not allow an intermediate
node to respond to an RREQ packet even though it knows of
a partial path toward the destination node. Hence, there are no
GRAT_RREP packets. However, our scheme can still be used to
reduce spurious retransmissions. We allow the ACK sequence
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Fig. 3. Route reply generation by destination node.

to be piggybacked onto the flooded RREQ packet. When the
RREQ packet arrives at the TCP sender, the TCP sender can be
informed of the sequence information and it can then suppress
spurious retransmissions (see Fig. 3).

B.2 Mechanism to Address the Impairment of Fast Retransmit
(S2 Scheme)

In standard TCP, a TCP sender retransmits each TCP DATA
packet if its corresponding ACK packet is not received in a cer-
tain period of time called a timeout interval. In particular, a
TCP receiver transmits a duplicate ACK packet immediately in
the case of an out-of-order TCP DATA packet arriving, implying
that a packet loss has occurred. This duplicate ACK packet still
has a sequence number of the next expected TCP DATA packet.
The TCP fast retransmit technique utilizes these duplicate ACK
packets. It aims to retransmit a lost packet more quickly than the
timeout-based retransmission. In other words, if three duplicate
ACK packets for a lost packet arrive at the TCP sender before
a timeout occurs, the lost packet will be retransmitted immedi-
ately.

As mentioned before, however, if these duplicate ACK pack-
ets are lost, the retransmission of a lost TCP DATA packet ul-
timately depends on the timeout mechanism due to the lack of
the number of ACK packets needed to invoke the fast retrans-
mit. Before retransmitting the lost TCP DATA packet, the TCP
sender should stay in an idle state without any other transmis-
sion of further TCP DATA packets until the retransmission timer
expires.

Hence, although some duplicate ACK packets have been lost,
we would like the TCP sender to be informed that the TCP re-
ceiver has already transmitted a sufficient number of ACK pack-
ets, in order to execute the fast retransmit successfully.

To support this goal, our scheme piggybacks the occurrence
number of duplication onto transmitted ACK packets. In this
scheme, an additional sequence field is also required (called a
dup_count field in this paper). For example, the first, second
and nth duplicate ACK packets have “1,” “2,” and “n” as the val-
ues of the dup_count field, respectively. Also, a TCP receiver
maintains a variable, dupacks in order to count the occurrence
of the duplicate ACK packets. In the case of an in-order TCP
DATA packet or a TCP DATA packet filling a gap in the re-
ceiver’s queue arriving, the dupacks is initialized to 0. Other-
wise, in the case of an out-of-order TCP DATA packet arriving,
the dupacks variable is increased by 1. Hence, when the TCP
receiver transmits its ACK packet, it fills the dup_count field in
the ACK packet with a current value of the dupacks variable,
and transmits the ACK packet (see Algorithm 2).

In standard TCP, a TCP sender decides an execution of
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the fast retransmit, depending on the number of the dupli-
cate ACK packets. However, in our scheme, the TCP sender
executes the fast retransmit if dup_count > num_dupacks,
where num_dupacks is the number of the duplicate ACK pack-
ets required to invoke the fast retransmit. (In standard TCP,
num_dupacks is 3.) See Algorithm 2.

Finally, our scheme also conforms to the fast recovery used in
TCP variants in order to compensate for the congestion window
after the fast retransmit is performed.

Algorithm 2 Mechanism to address impairment of fast retrans-
mit
dupacks : A variable counting the occurrence of duplicate ACK packets at a
TCP receiver
num_dupacks : The number of duplicate ACK packets needed to invoke
the fast retransmit (default value is 3)
dup_count : A field in the ACK packet representing the occurrence of du-
plication
seqno : A cumulative ACK sequence contained in a duplicate ACK packet
cwnd : Congestion window

TCP Receiver :
if ( TCP DATA packet Received) then
if (In-order TCP DATA packet Received) then

if (dupacks # 0) then
dupacks =0;
end if
else
dupacks = dupacks + 1 ;
end if
send an ACK packet with dup_count set to dupacks
end if
TCP Sender :

if (Duplicate ACK Received) then
if (dup_count >= num_dupacks) then
cwnd = cwnd/2;
retransmit the lost packet with segno + 1
end if
end if

Fig. 4 shows an illustrative example of the operation of the S2
scheme. The TCP sender starts its retransmission timer at time
t; and transmits six TCP DATA packets consecutively. Assume
that all TCP DATA packets except the second TCP DATA packet
reached the TCP receiver. In this case, the TCP receiver gener-
ates four duplicate ACK packets. Without ACK loss, standard
TCP would enable the TCP sender to execute the fast retransmit
when the third duplicate ACK packet is received (at ¢3). How-
ever, in the case that the first and second ACK packets are lost,
standard TCP cannot successfully perform the fast retransmit,
but retransmits the lost packet after the timer expires (at ¢3). Our
S2 scheme, however, is able to execute the timely fast retransmit
by examining the dup_count field in the received packet (at ¢2).

C. Discussion on Cross-Layering and Modification of the
Packet Format

In TCP-pgy, the S1 scheme requires the interactions be-
tween routing and transport layers and the inclusion of the
ack_seq into the routing control packets (like RREQ or
GRAT_RREP). Also, the S2 scheme needs some additional field
of dup_count in the transport message format.

Compared to other cross-layering approaches to improve
TCP performance [15], the S1 scheme is able to achieve this
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Fig. 4. An illustrative example of the operation of the S2 scheme.

goal with minor modification to protocol stacks. Also, the
IETF working group has standardized a Generalized MANET
Packet/Message Format (packetBB) [17] that routing protocols
conform to. Hence, the ack_seq field needed to suppress spu-
rious retransmission can be easily added into the RREQ or
GRAT_RREP packet.

Finally, the dup_count field, which is needed to implement the
S2 scheme mentioned in Section I1I-B.2, can be defined by using
the option field or the 6-bit reserved field in the TCP header.

IV. PERFORMANCE EVALUATION

We implemented TCP-pgy by modifying standard TCP, TCP-
NewReno to have the S1 and S2 schemes and compared TCP-
pgy with TCP-NewReno. The S1 and S2 schemes, however, can
also be applied to any TCP variants [18]-[20] where the absence
of ACK incurs retransmissions and the fast retransmit mecha-
nism is needed.

We evaluated our TCP-pgy performance from two points
of view; the intra-flow performance and the inter-flow perfor-
mance. In particular, since the reduction of spurious retrans-
missions affects the performance of all cross TCP flows in the
network, we also measured the total average throughput of all
TCP flows, which is called the average aggregate throughput
(denoted by AAT). In this simulation study, three performance
metrics of interests are: (a) Throughput of a single flow, (b) the
number of retransmissions, and (c) AAT.

A. Simulation Set-Up

Fig. 5 shows network topologies tested in these simulations.
For the purpose of measuring the intra-flow performance, string
topologies were tested. Next, grid topologies were set up to eval-
uate the inter-flow performance. Additionally, in order to inves-
tigate the effect of node mobility on the inter-flow performance,
dynamic networks with random topologies were tested.

In string and grid topologies, the distance between direct
neighbor nodes, the transmission range of nodes and their in-
terference ranges were 200, 250, and 550 meters, respectively.
In random topologies, 50 nodes were initially located at random
positions over a space of 1500 m X 300 m. The well-known
random way point model was used. The pause time was set to
0 and maximum speeds were varied. In addition, TCP senders
and receivers were statically placed at the edges of the simu-
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Fig. 5. Simulation topologies; (a) string topology, (b) grid topology, (c)
random topology.

Table 1. Simulation parameters.

Parameter Types  Value
Simulation time 600 s

Data Packet Size 1040 Bytes
MAC protocol IEEE 802.11
Data Rate 2 Mbps

IFQ length 50

Routing protocol AODV
Source traffic FTP

lated space [21] (see Fig. 5(c)). Table 1 shows the simulation
parameters commonly used in network topologies.

B. Intra-Flow Performance

In this section, we investigated the effect of the S1 and S2
schemes on the performance of a single TCP flow. In the string
topology, throughput performance with various hop-distance
from 4 to 14 was measured. As shown in Fig. 6, as the hop-
distance increases, the throughput decreases because the proba-
bility of a packet surviving to be transmitted to the destination is
lower due to channel interference or contention. Our schemes,
however, improved the throughput performance regardless of
hop-distance.

In the static string topology, link failure caused by node mo-
bility cannot be expected. The topology, however, suffers from
a situation where two neighbor nodes cannot communicate due
to the capture effect of the wireless channel or hidden terminal
problem (this situation is called ““false link failure™) [13], [21].

The ACK loss caused by the false link failure prevents the
TCP receiver from sending TCP ACK packets until a routing
layer at the destination node acquires a new path toward the
source node. Hence, the TCP sender will experience a timeout
event, which will bring about spurious retransmissions.

Furthermore, even if the TCP receiver has sent a sufficient
number of duplicate TCP ACK packets to execute the fast re-
transmit, it is possible that such ACK loss makes the TCP sender
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Fig. 6. Throughput in string topologies.

miss the chance to succeed in performing the fast retransmit. It
requires the TCP sender to stay in an idle state until the retrans-
mission timer expires. Only after the expiration, the TCP sender
will be able to retransmit the lost TCP DATA packet.

In the S2 scheme, when the TCP sender receives a duplicate
ACK packet, the TCP sender decides an execution of the fast re-
transmit, depending on the value of dup_count field. Therefore,
despite the occurrence of such ACK loss, the S2 scheme allows
the timely fast retransmit to be executed. It enables the TCP
sender to avoid staying in the idle state until the retransmission
timer expires.

In addition, in spite of the existence of ACK loss, the S1
scheme allows the TCP sender to be informed of the latest cu-
mulative ACK sequence through the cross layer technique men-
tioned before. Hence, in the case that a timeout has occurred
at the TCP sender, the spurious retransmissions of the packets
whose sequence is less than the ACK sequence updated by the
S1 scheme can be avoided.

The spurious retransmission obviously affects the degrada-
tion of end-to-end throughput performance in a wireless, multi-
hop network with the constrained spatial reuse. Thus, TCP-pgy
achieved throughput improvement by reducing the number of
spurious retransmissions, as shown in Fig. 7. In addition, since
connections with longer hop-distance need more time to send
a packet to the destination and excessive spurious retransmis-
sions require a great deal of wireless channel interference or
contention during the journey to the destination, better through-
put can be obtained by reducing the number of spurious retrans-
missions for long hop-distance connections, rather than reduc-
ing them for short hop-distance ones. In particular, TCP-pgy
improved throughput performance up to 21.6% at a 14-hop dis-
tance.

Here, from a trace file produced by the ns-2 simulator, we
investigated how each of the S1 and S2 schemes in TCP-pgy
could contribute to performance improvements. Fig. 8(a) shows
the time sequence diagram where the standard TCP sender per-
forms spurious retransmissions. After TCP ACK packets, with
sequence numbers 14 and 15, were lost due to MAC contention,
the TCP sender experienced a timeout due to the elapsed route
recovery time and it retransmitted the TCP DATA packet with
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Fig. 7. The number of spurious retransmissions in string topologies.

the sequence number 14. After the route was recovered, the TCP
ACK packets (16-19), that had not been transmitted to the TCP
sender due to the absence of an available path, arrived at the
TCP sender. Thus, according to the go-back-N mechanism in
standard TCP, eight TCP DATA packets, that the TCP receiver
had previously received, were retransmitted spuriously.

In contrast, Fig. 8(b) shows the time sequence diagram where
the S1 scheme is applied. After TCP ACK packets with se-
quence numbers 14 and 15 were lost, the RREQ packet, which
was transmitted by the TCP receiver, piggybacked a cumula-
tive ACK packet with the sequence number 23. Thus, the TCP
sender was notified of the sequence number and such a spurious
retransmission was avoided.

After a route is recovered, the continuously-arriving ACK
packets allow the standard TCP sender to transmit its TCP
DATA packets aggressively with an increasing congestion win-
dow size, according to the slow start mechanism. Therefore, a
packet burst can occur, which causes packet loss due to exces-
sive MAC contention [22]. Hence, in the S1 scheme, new TCP
DATA packets are transmitted from the instant when an ACK
packet, with a greater sequence number than the ACK sequence
piggybacked onto the RREQ packet, arrives.

Next, Fig. 9(b) shows a time-sequence diagram where the S2
scheme is able to avoid a timeout by performing the timely fast
retransmit despite the absence of a sufficient number of ACK
packets.

After TCP DATA packets with sequence numbers 993, 994,
and 995 were lost, the TCP receiver sent three duplicate ACK
packets with sequence number 992. The TCP sender, however,
succeeded in receiving only one duplicate ACK packet due to
ACK losses. In this case, standard TCP had to depend on the
timeout event in order to retransmit a lost packet due to the lack
of the second and third duplicate ACK packets (around 107.2s
in Fig. 9(a). The sequence number, dup_count included in the
ACK packets, however, allowed the TCP sender to avoid the
timeout by executing the fast retransmit immediately (around
106.7s in Fig. 9(b)).

C. Inter-Flow Performance

In the previous section, the performance of a single TCP flow
in the network was investigated. In particular, the reduction of
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Fig. 8. Time-sequence diagram to illustrate the S1 scheme’s contri-
bution; (a) spurious retransmissions in standard TCP, (b) spurious
retransmissions in TCP-pgy.

spurious retransmission from a given TCP flow can relieve other
cross TCP flows from the inter-flow interference. Hence, using
the grid topology, we conducted the performance measurement
of the cross TCP flows in this section. In addition, the effect of
node mobility on the performance of TCP-pgy was examined,
using random topologies.

C.1 Grid Topology

We measured the aggregate throughput over a different num-
ber of TCP flows in the grid network topology. Various cross
traffic scenarios of two flows (flow 1 and flow 2), four flows
(flow 1 to flow 4), six flows (flow 1 to flow 6), eight flows (flow
1 to flow 8), and ten flows (flow 1 to flow 10) were simulated
(see Fig .5(b)).

With more cross traffic created as the number of TCP flows
increases, greater interferences, and ACK losses occur due to
false link failures. As the number of cross TCP flows grows
in the network, AATs of both TCP-pgy and standard TCP in-
crease, as shown in Fig. 10. However, compared to standard
TCP, TCP-pgy achieves higher AAT due to the reduction of spu-
rious retransmissions through the S1 scheme and the reduction
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pgy.

of the period of idle time spent by the TCP sender through the
S2 scheme. In particular, TCP-pgy achieved as high as 58.4%
performance improvement in the six-flow case.

With reference to Fig. 11, in standard TCP, when the number
of TCP flows increases, TCP senders experience a larger number
of timeouts. This results in significant spurious retransmissions.
However, TCP-pgy yields a lower number of spurious retrans-
missions for all cross traffic scenarios. As the number of TCP
flows is increased from 2 to 10, the number of spurious retrans-
missions increases by 232.8% and 87.3% for standard TCP and
TCP-pgy, respectively. In particular, TCP-pgy reduces the num-
ber of spurious retransmissions by 70.8% in the ten-flow case,
when compared to standard TCP.

C.2 Random MANET Topology

In this simulation, random topologies with node mobility are
considered with evaluation of TCP-pgy according to speed of
nodes and the number of TCP flows. Similar to the previous
simulations using grid topologies, two cross traffic scenarios of
three-flow (flow 1, flow 2, and flow 3) and five-flow (flow 1 to
flow 5) cases were tested (see Fig. 5(c)).

From Fig. 12(a) and 12(b), as mobility increases in both cross
traffic scenarios, each AAT of both TCPs decreases. This is be-
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Fig. 10. Comparison of average aggregate throughput in grid topologies.
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Fig. 11. Comparison of the number of spurious retransmissions in grid
topologies.

cause too much time is spent in recovering from frequent route
breakage. However, TCP-pgy shows better performance than
standard TCP regardless of node mobility. Similar to static net-
works, such ACK loss occurs frequently in dynamic networks,
which is caused by link failure. Hence, as mentioned before, the
S2 scheme contributes to reducing spurious retransmissions of
the TCP sender and the idle time of the TCP sender can be re-
duced through the S2 scheme, which enables a lost TCP packet
to be retransmitted in a timely manner. The reduced number of
spurious retransmissions and the reduced amount of idle time at
the TCP sender are in proportion to throughput improvements.

From the bar graph as shown in Fig. 12(a), we observe that as
node mobility increases, the frequency of spurious retransmis-
sions decreases. This is because high mobility causes greater
“actual link failures” than “false link failures” [15]. Hence, due
to TCP DATA losses, a TCP sender will finally experience time-
outs and retransmit the lost TCP DATA packets. Although these
retransmissions are not spurious, they are indispensable. If the
difference in the number of spurious retransmissions between
TCP-pgy and standard TCP is low, TCP-pgy cannot show sig-
nificant throughput improvements.

Next, consider, however, the case with five cross TCP flows.
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As shown in Fig. 12(b), as the number of cross TCP flows is
increased, TCP-pgy achieves significant performance improve-
ments (in terms of aggregate throughput of all TCP flows), when
compared to the three-flow case. Since much cross traffic in-
creases channel contention and interferences (regardless of node
mobility), the occurrence of spurious retransmissions due to
false link failures also increase as shown in Fig. 12(b). Hence,
the reduction of such spurious retransmissions in TCP-pgy con-
tributes to improving TCP throughput performance. In particu-
lar, TCP-pgy achieved as high as 71.5% throughput performance
improvement at the mobility of 5 my/s.

Also, the TCP AIMD (Additive Increase Multiplicative De-
crease) mechanism allows the TCP sender to transmit its TCP
DATA packets by increasing its congestion window aggressively
until it detects packet loss. Hence, in static networks without any
mobility-driven link failure, packet loss mainly occurs due to ex-
cessive MAC contention which is caused by network overload.
In other words, since the TCP sender has already increased its
congestion window, consecutive TCP DATA packets must have
been transmitted from the TCP sender. Thus, a sufficient num-
ber of TCP ACK packets are transmitted to the TCP receiver,
so that the fast retransmit for a lost packet can be executed de-
spite the occurrence of packet loss. In dynamic networks with
node mobility, however, packet loss caused by route breakage
due to node mobility, prevents the TCP sender from allowing a
large congestion window to occur. Thus, the TCP sender cannot
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expect a sufficient number of TCP ACK packets.

In accordance with [23], if a TCP sender uses a small con-
gestion window, the TCP sender should perform the second du-
plicate ACK-based fast retransmit, not the third duplicate ACK.
Using a small congestion window implies the small number of
TCP DATA packets which the TCP sender can transmit con-
secutively. It indicates that when a loss of a TCP DATA packet
occurs, the number of TCP DATA packets, which will arrive at
a TCP receiver consecutively after the lost packet, is small. It
results in the absence of a sufficient number of ACK packets to
invoke the fast retransmit. However, the S2 scheme decides an
execution of the fast retransmit, depending on the dup_count
field in a received duplicate ACK packet, not the number of the
received duplicate ACK packets. Consequently, the S2 scheme
can accomplish the timely fast retransmit, despite the existence
of such ACK loss. In this sense, the S2 scheme contributes to
greater performance improvement in dynamic networks than in
static networks.

V. CONCLUSION

This paper introduced a new TCP with two piggybacking
schemes (called TCP-pgy) to resolve problems associated with
TCP ACK loss in order to improve TCP performance over re-
active routing protocols. First, in order to reduce the number of
spurious retransmissions which occur if a retransmission timer
expires due to the loss of an ACK packet, a cumulative ACK
sequence number of the TCP connection is piggybacked onto
routing control packets, from which the TCP sender can be noti-
fied of the sequence and can avoid spurious retransmission. The
sequence number is included in the routing control packets by
using the packetBB structure, as defined by IETF. Second, with
an addition of a counter field in duplicate ACK packets transmit-
ted by the TCP receiver, we also avoided performance degrada-
tion caused by impairment of the fast retransmit technique, due
to the absence of a sufficient number of duplicate ACK pack-
ets. The field is defined using the TCP option or a 6-bit reserved
field.

Through extensive simulations using the ns-2 simulator, we
observed significant throughput performance improvements in
static networks and dynamic networks. These two schemes can
be applied to any TCP variant which uses retransmission mech-
anisms such as a timeout or the fast retransmit, based on the
reception of the ACK packets. The schemes will be able to con-
tribute to overall TCP performance improvements, together with
other TCP proposals, in order to cope with other factors causing
TCP performance degradation.
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