초록
In this paper, we investigate the problem of minimizing the average transmission power of users while guaranteeing the average delay constraints in time-varying uplink channels. We design a scheduler that selects a user for transmission and determines the transmission rate of the selected user based on the channel and backlog information of users. Since it requires prohibitively high computation complexity to determine an optimal scheduler for multi-user systems, we propose a low-complexity scheduling scheme that can achieve near-optimal performance. In this scheme, we reduce the complexity by decomposing the multiuser problem into multiple individual user problems. We arrange the probability of selecting each user such that it can be determined only by the information of the corresponding user and then optimize the transmission rate of each user independently. We solve the user problem by using a dynamic programming approach and analyze the upper and lower bounds of average transmission power and average delay, respectively. In addition, we investigate the effects of the user selection algorithm on the performance for different channel models. We show that a channel-adaptive user selection algorithm can improve the energy efficiency under uncorrelated channels but the gain is obtainable only for loose delay requirements in the case of correlated channels. Based on this, we propose a user selection algorithm that adapts itself to both the channel condition and the backlog level, which turns out to be energy-efficient over wide range of delay requirement regardless of the channel model.