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Improved Delay-independent H, Performance Analysis and Memoryless
State Feedback for Linear Delay Systems with Polytopic Uncertainties

Wei Xie

Abstract: An improved linear matrix inequality (LMI) representation of delay-independent H,
performance analysis is introduced for linear delay systems with delays of any size. Based on
this representation we propose a new H, memoryless state feedback design. By introducin
g a new matrix variable, the new LMI formulation enables us to parameterize memoryles
s controllers without involving the Lyapunov variables in the formulations. By using a
parameter-dependent Lyapunov function, this new representation proposed here provides us the

results with less conservatism.

Keywords: Bounded real lemma, controller synthesis, H, performance, time-delay systems

commas.

1. INTRODUCTION

As is well known, H, performance is useful to
handle stochastic aspects such as measurement noise
and random disturbance. Meanwhile, robust H,
problem is developed in the efforts to provide stability
margins to the H. optimal (LQG) regulator in the
1970s. The difficulties encountered in the combination
of the classical and modern control [1,2] led to a shift
in focus to other performance criteria (He, L;), which
are directly linked to robust stability guarantees by
means of small gain theorem. However, robust control
methods based on H« and L; measures lean too
heavily on robustness and sacrifice an adequate view
of performance; the latter is often more naturally
described by an H, performance criterion, which can
be used to capture both the transient response of the
system and the response to stationary noise. The
promise of a successful combination of robustness and
H, performance was renewed in the late 1980s (see
{3-71). By introducing some additional variables there
are lots of literatures concerning improved Heo or Hs
analysis and synthesis of linear uncertain systems
without delays [8-15].

As to linear delay systems, the study concerning H,
control can be classified into two types: delay-
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dependent and delay-independent results. A delay-
dependent H, controller ensures asymptotic stability
and a prescribed H, performance for any delays
smaller than a given bound, while a delay-independent
H; controller guarantees asymptotic stability and a
prescribed H, performance for delays of any size.
However, the bound of delay is not previously known
in many actual sites, including communication over
the Internet. Thus, the study of delay-independent H,
performance analysis and synthesis is very meaningful.
In this paper, we will focus on delay-independent H,
performance analysis and memoryless H, controller
design for linear delay systems. Based on standard
delay-independent H; performance analysis condition,
H, performance computation problem of linear system
with delays with any size can be presented as a
standard LMI optimization formulation [16], which
includes the product of the constant Lyapunov
function matrix and system matrices.

The main conservatism of the existing delay-
independent H, performance analysis conditions
stems from the inequality bounding technique
employed for some cross terms encountered in the
performance analysis. By introducing some slack
matrix variables, less conservative LMI representation
of delay-independent H, analysis and synthesis
conditions for linear delay systems have not been
explored fully yet. It motivates the present study.

In this paper, first, an equivalent LMI
representation of delay-independent H, performance
analysis for linear delay systems is introduced. By
introducing a new matrix variable, the new
representation is linear with Lyapunov function matrix
and system matrix and does not include any product
of them. It provides us with a numerical computation
method of H, norm. Secondly, by using parameter-




264 Wei Xie

dependent Lyapunov function; this representation can
reduce the conservatism that occurs in the controller
design problem with a fixed Lyapunov function. Then
based on this representation, we consider robust H,
memoryless state feedback synthesis problem. We
demonstrated the applicability of the new method on
two examples. And our results are compared with the
standard H, performance analysis formulation, where
a fixed Lyapunov function was used.

2. PRELIMINARY

Given the following linear continuous-time
delaysystem G described in state space form by the
equations

x(t) = Ax(t) + Ax(t — )+ B,w(t), )]
z(t) = C,ox(t) + C,yx(t — 7). (2)

We assume that the initial conditions are null,
x(t)=0,vte[-,0]. 3)

Matrices (4, 4,B,,,C,4,C,,D,,) are constant
matrices of appropriate dimensions. x(f)eR” is
system state vector, w()eR? is exogenous dist-

urbance signal and z(r) e R™ is objective function
signal including state combination, z is the delay of
the system.

For a prescribed scalar >0, we define H,
performance index by

ol = ,}gr;oE{% fy z""(t)z(r)dt}, (4)

when the initial conditions are null and w(¢) is a

zero-mean white process with an identity power
spectrum density matrix, where in the above E
denotes mathematical expectation.
First, we will give the standard delay-independent
H, performance analysis for these systems as follows:
Lemma 1: Consider the system (1)-(3), for a given
scalar y >0, this system is asymptotically stable and

"G“é <y for any constant delay parameter >0 if

there exist symmetric and positive definite matrices
£y, B and W, such that the LMI

[4TR +R4 +B B4 CT
(*) -5 ¢l <o, (5a)
*) * -1
I T
W BBy | o0, Trace(w) <y, (5b)
* B

has a feasible solution.
The proof of this lemma can be referred to [4,16].
Remark 1: we can find that the LMI (5) is not
suitable for the controller synthesis problem, using
Schur complement lemma and similar transformation

as to (5), by letting Byl=0,, B =0, we obtain
the equivalent formulation of (5) as

[ 0" +4 0, QClo 40 O
(*) =/ Clel 0 <0, (6a)
(*) ™ -0 0

I * (*) ™ -9

'w BL

o >0, Trace(W)<y. (6b)

This LMI representation is convenient for us to anal-
yze and synthesize nominal control performance for
linear delay systems, when system matrices
(4,4,B,.C,,C,;) do not include any polytopic-
type uncertainties. However, in the case of linear
delay systems with polytopic-type uncertainties, it
will result in very conservative computation for
Hjcost y due to the constant Lyapunov function

matrix. When parameter-dependent  Lyapunov
function is introduced to reduce conservatism in (6),
this representation can not be extended to controller
design problem due to the product of Lyapunov
function matrix and system matrix.

3. ANEW LMI REPRESENTATION OF H,
PERFORMANCE ANALYSIS

In this section, first we propose a new equivalent
LMI representation of H, performance analysisfor
linear delay systems with delays of any size. Then,
this condition is considered to compute H, guaranteed
cost for linear delay system with polytopic-type
uncertainties.

Theorem 1: There exist symmeiric positive-
definite matrices @, | and W to satisfy (6), if

and only if there exist symmetric positive-matrices
Oy, O, W andageneral matrix F satisfying

(aF+FTAT 0, -FT +raF FTCly 40 0,

*) -r(F+FTy  wFTCh 0 0

*) *) -I Cy0 0

*) *) *) -0 0
) ™) *) * -G

<0, (7a)

'w B!
L*) D

} >0, Trace(W)<y (7b)
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for a sufficiently small positive scalar r.

Proof: When symmetric positive-definite matrices
Oy, O and W satisfying (6a) and (6b) exists, we
always can find a positive
r<24/4,, where

scalar r>0 as

0o +40, 0CL 40 O

*) -1 C0 0
A :ﬂmin -
‘ *) " -0 0
*) *) ™ -9
and
AgyAa"  AQCly 0 0
Ay = Ao C.000d"  C,00Cly 0 0
0 0 0 0
0 0 0 0

Then applying Schur complement with respect to (7a)
by choosing F =(J,, we have

0" +40, OCl 40, O

*) =1 Ca& 0
(*) ™ -0 0
() *) ™ -9
T T (8)
A0yAT  4Q,Cly 0 0
LT CgQoAT CoQeCly 0 0|
2 0 0 0 0
0 0 0 0

The scalar » makes (7a) always satisfy.

When positive symmetric matrices Q,, @, W, a
general matrix F and a positive scalar r>0
satisfying (7a) exist, we multiply (7a) with

I 4 000
0 Cpp I 0 0
T={0 0 0 I 0
0 0 00 0
0 0 0 0 0

on the left and 77 on the right, since matrix T is

full row rank, we can get (6a) directly. ‘
Based on this formulation, we will consider the

case of linear delay systems with polytopic-type

uncertainties. Assuming system matrices (A(a), 4
(a),B,,(a),C
but belong to a polytopic uncertainty domain 0, we
have

.0(a),C,;(a)) are not precisely known,

(A(a), 41(a), B, (a),C.o(a),C 1 (a)) €O =
(4(a), 4(a), B,,(a),Co(a),C; (a))

N
zzai(Ai’Alewwc OI’Czl,i)9
i=l

CzOz’ zlz) i=1,.

stant matrices with appropriate dimensions, and
a;, i=1...,N, are time-invariant uncertainties.
Theorem 1 is extended to linear delay systems as (9)
by employing a parameter-dependent Lyapunov
function as follows:

Theorem 2: Given system (9), its H, norm is less
than a prescribed value of y, if there exist positive

where (4;,4,;,B

Wi ...V, are con-

symmetric matrices () ;, O, W and a general matrix
F satisfying

AF+FT AT 0y, —FT +r4F
*) r(F+F")
) )
*) *)
L™ *
FTCh, 4,0 QO,iﬂ
rF CzO i 0 0
-7 Ca0 0 <0,(10a)
*) -0 0
*) ™ -0
T
{Z) l; :J >0, Trace(W)<7y, (10b)

i=1,...,N, forapositive scalar r.

Thereby, H, control performance of uncertain
continuous-time systems is guaranteed with a
prescribed value of y. By introducing this

parameter- dependent Lyapunov function matrix

N
N, a; =1,
i=1

H, guaranteed cost y will be obtained less than

N
Qo(a) =Zal-Q0,i, a; 20,1':1,‘..,

i=1

quadratic Lyapunov function based results, where
Lyapunov function matrix is a fixed one.

Since general matrix F is assumed to be constant
one as to system matrices with polytopic-type
uncertainties, Theorem 2 is also suitable for control
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synthesis purpose. Furthermore, the conditions (10)
above will be used to H, memoryless state-feedback
synthesis control problem.

Remark 2: there are some other ideas proposed in
[17-19], which could be used for the problem
considered in this paper for the future research. The
crucial point in these papers is that no com-mon
matrix variable is required for the entire uncertainty
domain.

4. H, MEMORYLESS STATE FEEDBACK

In this section, Theorem 2 will be extended to solve
H, memoryless state-feedback control problem for
linear delay systems with polytopic-type uncertainties
consider the following linear delay system:

x(t) = A(a)x(t) + A (a)x(t — 1)+ B, (a)w(t)
+ B, (a)u(?),
z(t) = C,o(a)x(t) + C,(a)x(t — ) + D,, (a)u(t),

(11)

where x,z and w are as in (1)-(3) and ue R is

the control input.
Assuming that the system matrices lie with the
following polytope as

(4A(a), 4 (a),B,,(a),B,(a),C,y(a),C,,(a),D,,(a)) e 0=
(A(a)a Al (a)9 Bw (a)’ Bu (a)v CzO (a)’ Czl (a)>Dzu (a))

N

= Z a; (Ai » Al,i ’ Bw,i > Bz:,i ’ CzO,i » Czl,z' ’ Dzu,i)’
i=1

N .(12)
a =1

The state-feedback control problem is to find, for a
prescribed scalar y >0, the state-feedback gain K

such that the H, memoryless control law of u=Kx
guarantees an upper bound of y to H, norm.

Substituting this state-feedback control law into
(11), the closed-loop system can be obtained as

x(t) = (A(a) + B, (a)K)x(t) + 4 (a)x(t — 1)
+ B, (a)w(?),
z(t) =(C,o(a) + D, (a)K)x(t) + C,  (a)x(t — 7).

(13)

Then, a state-feedback gain K will be solved
according to the following theorem.

Theorem 3: Given system (13), its H, norm is less
than a prescribed value of y, if there exist positive

symmetric matrices O ;, 01, W and general matrices

F, M satisfying

[ 4F+F 4T +B, M+M"BL, Q) —F +rd;F +rMB,,
*) —r(F+F")
*) *)
(*) *)

| () *)

Fck,+M' DL A0 Qo
rFTCly; +rM™ DL, 0 0

.y Czl,iQ] 0 [<0,(14a)
*) —-Q 0
*) * -0

w Bl
By, >0, TraceW)<y.i=1,...,N (14b)
™) Qo

for a positive scalar r. If the existence is affirmative,

the state-feedback gain K isgivenby K = MF -1
Remark 3: It also should be noted, as to robust

performance analysis and synthesis problem, the cost

value y will not be a monotonously decreasing

function with the decreasing of scalar 7.
In order to obtain the minimum possible y, we

consider solving (14a) and (14b) by iterating over r.
Although some computation complexity is increased,
less conservative results will be obtainable.

5. NUMERICAL EXAMPLES

In this section, the approaches developed above
areillustrated by a simple example; All LMIs-related
computations were performed with the LMI Toolbox
of Matlab [20].

We consider the problem of controlling the yaw
angles of a satellite system with delays. The satellite
system consisting of two rigid bodies joined by a
flexible link is assumed to have the state-space
representation as follows:

0 0 1 0
(0 0 0 0 1 ®
X = X
-k k -f f
k -k f -f
[0 0 0 0
0 0 0 0
+ x(t—1)
-0.01 0 0 0
| 0 -0.001 0 -0.001
K¢ 0
0 0
+ w+ U,
0 1
1 0
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Fig. 1. The relation between performance y and .

0100 0
z= X+ u,
0 00O 0.01
where k£ and f are torque constant and viscous

damping, which vary in the following uncertainty
ranges: k<[0.09 04] and f <[0.0038 0.04].

Two methods are considered to solve this control
problem.
1. The method of Lemma 1 with a fixed Lyapunov
function matrix, the minimum guaranteed level of
¥ =2.0335 can be achieved with

K=—102*[O.5528 2.601 0.1476 4.961].

2. The method of Theorem 3, the minimum
guaranteedlevel of y =1.1353 can be achieved

for »=0.22 with state feedback gain
K =-10%*[0.266 2.268 0.106 2.462].

The relation between performance y and r is

shown as Fig. 1.

Remark 4: From above example, as to robust con-
trol synthesis problem, we can find that the cost value
¥ is not a monotonously decreasing function with

the decreasing of scalar », H; guaranteed cost
y=1.1353 is obtained for the positive scalar

r=0.22. From above numerical examples, the
method proposed in this paper provides better results
than a common Lyapunov matrix based method for
robust analysis and synthesis problems of H, control.

6. CONCLUSIONS

New equivalent LMI representations to H,
performance analysis have been derived for linear
delay systems with delays of any size. By using a
parameter-dependent  Lyapunov  function, new
representation gives us the results with less cons-

ervatism not only for H, norm computation but also
memoryless state-feedback design of linear delay
systems with polytioic-type uncertainties.
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