Abstract
In this paper, we present the practical application of an Unscented Kalman Filter (UKF) for an Indoor Mobile Localization System using ultrasonic sensors. It is true that many kinds of localization techniques have been researched for several years in order to contribute to the realization of a ubiquitous system; particularly, such a ubiquitous system needs a high degree of accuracy to be practical and efficient. Unfortunately, a number of localization systems for indoor space do not have sufficient accuracy to establish any special task such as precise position control of a moving target even though they require comparatively high developmental cost. Therefore, we developed an Indoor Mobile Localization System having high localization performance; specifically, the Unscented Kalman Filter is applied for improving the localization accuracy. In addition, we also present the additive filter named 'Pre-filtering' to compensate the performance of the estimation algorithm. Pre-filtering has been developed to overcome negative effects from unexpected external noise so that localization through the Unscented Kalman Filter has come to be stable. Moreover, we tried to demonstrate the performance comparison of the Unscented Kalman Filter and another estimation algorithm, such as the Unscented Particle Filter (UPF), through simulation for our system.