DOI QR코드

DOI QR Code

Application of Slope-area Discharge Estimation Method using Continuously Observed Water Level Data in a Gravel Bed River -Case Study of the Dal Cheon River-

자갈하천에서 연속적인 수위 자료를 이용한 경사면적법 유량 산정 -달천 사례연구-

  • Lee, Chan-Joo (River & Coast Research Division, Korea Institute of Construction Technology) ;
  • Kim, Ji-Sung (River & Coast Research Division, Korea Institute of Construction Technology) ;
  • Kim, Chi-Young (River & Coast Research Division, Korea Institute of Construction Technology) ;
  • Kim, Dong-Gu (River & Coast Research Division, Korea Institute of Construction Technology)
  • 이찬주 (한국건설기술연구원 하천.해안연구실) ;
  • 김지성 (한국건설기술연구원 하천.해안연구실) ;
  • 김치영 (한국건설기술연구원 하천.해안연구실) ;
  • 김동구 (한국건설기술연구원 하천.해안연구실)
  • Published : 2008.05.25

Abstract

In this study we calculate discharge by slope-area method using continuously observed water level data and analyse the results. This study is performed in the Dalcheon river reach of 960 m length including riffles and a pool, which is located downstream of the Goesan Dam. Three values of roughness coefficient are applied to discharge calculation, which are established using bed material size analysis. Another roughness coefficient value obtained from the river improvement plan is also used. Calculated discharges by slope-area method are compared with dam discharges. Relative difference from dam discharges appears to be largely affected by roughness values and a value of 0.042 or more seems most suitable for the entire study reach. Smaller roughness value is suitable to the reach which has gentler water surface slope than mean channel slope of the entire study reach, while a larger value to steeper reach. In case roughness value is set considering overall slope of the channel, it is desirable to select the entire calculation reach including both gentler and steeper sub-reaches. Since relative difference becomes nearly constant at over 500 cms, in case that verification of applied roughness is conducted with other directly measured discharge, accuracy of measurement by slope-area method for larger discharge may be improved.

본 연구에서는 연속적인 수위 자료를 이용하여 경사면적법으로 유량을 산정하고 그 결과를 분석하였다. 대상 하천은 괴산댐 하류의 달천으로 여울과 웅덩이를 포함하는 약 960m의 구간이다. 하상 재료의 입경을 분석하였고 이를 이용하여 3가지 조도계수값을 산정하여 유량 계산에 활용하였으며, 추가로 하천정비기본계획의 조도계수도 사용되었다. 경사면적법으로 계산된 유량은 댐 방류량과 비교되었다. 댐 방류량과 비교한 상대오차는 조도계수에 큰 영향을 받는 것으로 나타났으며, 연구 대상 구간에 적절한 조도계수는 0.042 이상인 것으로 나타났다. 대상 구간의 평균하상 경사보다 완만한 수면경사를 갖는 계산 구간에서는 구간 전체의 조도계수보다 낮은 조도계수를 사용할 경우 유량 오차가 적었으며, 수면경사가 평균하상경사보다 급한 구간에서는 조도계수를 크게 사용하여야 상대오차가 감소하는 것으로 나타났다. 하도의 전체적인 하상경사를 고려하여 조도계수를 설정할 경우에는 수면경사가 완만한 구간과 급한 구간을 모두 포함하도록 전체 계산 구간을 설정하는 것이 적절한 것으로 나타났다. 500 cms 이상의 유량에서는 실측 유량과의 상대 오차가 일정해지므로, 비교 유량 측정이 이루어질 경우 조도계수를 검증한 후, 경사면적법을 적용함으로써 간접 유량측정 결과의 정확도를 높일 수 있을 것으로 판단된다.

Keywords

References

  1. 김지성, 이찬주, 김원 (2007a). “실측 수위에 의한 자갈 하천의 조도계수 산정.” 한국수자원학회논문집, 한국수자원학회, 제40권, 제10호, pp. 755-768 https://doi.org/10.3741/JKWRA.2007.40.10.755
  2. 김지성, 이찬주, 김원 (2007b). “현장실측에 의한 조도계수 산정의 불확실도 평가.” 한국수자원학회논문집, 한국수자원학회, 제40권, 제10호, pp. 801-810 https://doi.org/10.3741/JKWRA.2007.40.10.801
  3. 우효섭 (2001). 하천수리학, 청문각
  4. 이찬주, 김원, 김지성 (2007). “국내하천의 조도계수 산정방법 조사.” 2007년 한국수자원학회학술발표회논문집, 한국수자원학회, pp. 966-970
  5. 이찬주, 김원, 김동구, 김치영 (2007). “동시유량측정에의한 다양한 유량측정 방법 비교.” 2007년 대한토목학회학술발표회논문집, 대한토목학회, CD-ROM
  6. 충청북도 (1995). 달천 하천정비기본계획보고서(지방2급하천)
  7. Barnes, H. H., Davidian, J. (1978). "Indirect methods." In: Herschy, R. W. (ed.), Hydrometry: principles and practices, Wiley, New York, pp. 189-190
  8. Barnes, H.H., Jr. (1967). Roughness characteristics of natural channels. U.S. Geological Survey Water- Supply Paper 1849
  9. Benson, M. A., Dalrymple, T. (1967). "General field and office precedures for indirect discharge measurements," U.S. Geological Survey Techniques of Water-Resources Investigation, book 3, Chapter A-1
  10. Bowers, J. C. (2001). Flood in Cuyama Valley, California, February 1998, USGS Fact Sheet fs162-00
  11. Bray, D.I. (1979). "Estimating average velocity in gravel-bed rivers." Journal of Hydraulic Division, ASCE, Vol. 105, No. 9, pp. 1103-1122
  12. Chow, V.T. (1959). Open-channel hydraulics, New York, McGraw-Hill
  13. Cowan, W.L. (1956). "Estimating hydraulic roughness coefficients." Agricultural Engineering, Vol. 37, No. 7, pp. 473-475
  14. Dalrymple, T., Benson, M.A. (1968). "Measurement of peak discharge by the slope-area method," U.S. Geological Survey Techniques of Water- Resources Investigation, book 3, Chapter A-2, 12p
  15. Dingman, S.L., Sharma, K.P. (1997). "Statistical development and validation of discharge equations for natural channels", Journal of Hydrology, Vol. 199, pp. 13-35 https://doi.org/10.1016/S0022-1694(96)03313-6
  16. Fulford, J. M. (1994). User's guide to SAC, a computer program for computing discharge by slope-area method, US Geological Survey Open-File Report 94-360
  17. Hicks, D.M. and Mason, P.D. (1991). Roughness charateristics of New Zealand Rivers, DSIR Marine and freshwater, Wellington
  18. Jarrett, R.D. (1984). "Hydraulics of high-gradient streams," Journal of hydraulic engineering, Vol. 110, No. 11, pp. 1519-1539 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1519)
  19. Jarrett, R.D. (1987). "Errors in slope-area computations computations of peak discharges in mountain streams." Journal of Hydrology, Vol. 96, pp. 53-67 https://doi.org/10.1016/0022-1694(87)90143-0
  20. Limerinos, J.T. (1970). Determination of the Manning coeffcient from measured bed roughness in natural channels, U.S. Geological Survey Water Supply Paper 1898-B, 47pp
  21. Quick, M.C. (1991). "Reliability of flood discharge estimates." Canadian Journal of Civil Engineering, Vol. 18, pp. 624-630 https://doi.org/10.1139/l91-076
  22. Richards, K. (1982). Rivers : form and process in alluvial channels, New York, Methuen
  23. Riggs, H.C. (1976). "A simplified slope-area method for estimating flood discharges in natural channels." Journal of Research, U.S. Geological Survey, Vol. 4, pp. 285-291
  24. Strickler, A. (1923). "Beitrage zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahlen fur Strome, Kanale und geschlossene Leitungen." Mitteilungen des Eidgenossischen Amtes fur Wasserwirtschaft 16, Bern, Switzerland (Translated as "Contributions to the question of a velocity formula and roughness data for streams, channels and closed pipelines." by T. Roesgan and W. R. Brownie, Translation T-10, W. M. Keck Lab of Hydraulics and Water Resources, Calif. Inst. Tech., Pasadena, Calif. January 1981)
  25. USGS (2000). Sparta, New Jersey, Flood of August 11-14, 2000, USGS Fact Sheet fs104-01

Cited by

  1. Physical Habitat Simulation Considering Stream Morphology Change due to Flood vol.34, pp.3, 2014, https://doi.org/10.12652/Ksce.2014.34.3.0805
  2. An Estimation of Roughness Coefficient in a Channel with Roughness Correction Blocks vol.34, pp.1, 2014, https://doi.org/10.12652/Ksce.2014.34.1.0107
  3. A quasi-2D and quasi-steady hydraulic model for physical habitat simulations vol.8, pp.2, 2015, https://doi.org/10.1002/eco.1504
  4. Discharge prediction using hydraulic characteristics of mean velocity equation vol.71, pp.2, 2014, https://doi.org/10.1007/s12665-013-2468-y