A Novel Kinesin-like Protein, Surhe is Associated with Dorsalization in the Zebrafish Embryos

  • Kim, Eun-Joong (School of Pharmacy, Seoul National University) ;
  • Ro, Hyun-Ju (NIH-NICHD-LMG) ;
  • Huh, Tae-Lin (Department of Genetic Engineering, Kyungpook National University) ;
  • Lee, Chang-Joong (Department of Biology, College of Natural Sciences, Inha University) ;
  • Choi, Jin-Hee (Faculty of Environmental Engineering, College of Urban Science, University of Seoul) ;
  • Rhee, Myung-Chull (Department of Biology, College of Biosystem Science, Chungnam National University)
  • Published : 2008.12.31

Abstract

We are reporting the expression patterns and possible biological functions of a novel Kinesin-like protein, Surhe, in the zebrafish. Homology studies of derived amino acid sequences suggest that Surhe has an amino-terminal kinesin motor domain that is similar to that of the emerging MKLP-1 subfamily [Kim and Endow, 2000] and two coiledcoil domains in a central region. Cellular localization studies in mammalian cells revealed that Surhe protein is located in cytoplasm, suggesting that Surhe may be involved in the intracellular transport. During the developmental process, surhe transcripts are highly expressed in early embryonic stages. Overexpression of the dominant negative form of Surhe significantly down-regulates the dorsalization markers, such as goosecoid, bozozok, and chordin. Taken together, we postulate that Surhe may be involved in dorsalization process as a motor molecule.

Keywords

References

  1. Bowerman B (1998) Maternal control of pattern formation in early Caenorhabditis elegans embryos. Curr Topics Dev Biol 39: 73-117 https://doi.org/10.1016/S0070-2153(08)60453-6
  2. Brendza RP, Serbus LR, Duffy JB, and Saxton WM (2000) A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289: 2120-2122 https://doi.org/10.1126/science.289.5487.2120
  3. Chen M, Zhou Y, and Detrich III HW (2002) Wnt signaling and dorsoventral axis specification in vertebrates. Physiol Genomics 8: 51-66 https://doi.org/10.1152/physiolgenomics.00042.2001
  4. de Robertis EM, Larrain J, Oelgeschlager M, and Wessely O (2000) The establishment of spemann's organizer and patterning of the vertebrate embryo. Nature Review Genetics 1: 171-181 https://doi.org/10.1038/35042039
  5. Diefenbach RJ, Mackay JP, Armati PJ, and Cunningham AL. (1998) The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37: 16663-16670 https://doi.org/10.1021/bi981163r
  6. Echard A, Jollivet F, Martinez O, Lacapere JJ, Rousselet A, Janoueix-Lerosey L, and Goud B (1998) Interaction of Golgiassoiciated kinesin-like protein with Rab6. Science 279: 580-585 https://doi.org/10.1126/science.279.5350.580
  7. Farzan SF, Ascano M Jr, Ogden SK, Sanial M, Brigul A, Plessis A, and Robbins DJ (2008) Costal2 functions as a kinesin-like protein in the hedgehog signal transduction pathway. Curr Biol 18: 1215-1220 https://doi.org/10.1016/j.cub.2008.07.026
  8. Fuentealba LC, Eivers E, Ikeda A, Hurtado D, Kuroda H, Pera EM, and De Robertis EM (2007) Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131:980-993 https://doi.org/10.1016/j.cell.2007.09.027
  9. Goldstein LS (2001a) Molecular motors: from one motor many tails to one motor may tales. Trends Cell Biol 11: 477-482 https://doi.org/10.1016/S0962-8924(01)02143-2
  10. Goldstein LS (2001b) Kinesin molecular motors: Transport pathways, receptors, and human disease. Proc Natl Acad Sci USA 98: 6999-7003
  11. Guzik BW and Goldstein LS (2004) Microtubule-dependent transport in neurons: steps towards an understanding of regulation, function and dysfunction. Curr OPin Cell Biol 16(4): 443-450 https://doi.org/10.1016/j.ceb.2004.06.002
  12. Hamada T (2007) Microtubue-associated proteins in higher plants. J Plant Res 20: 79-98
  13. Heasman J (1997) Patterning the Xenopus blastula. Development 124: 4179-4191
  14. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279: 519-526 https://doi.org/10.1126/science.279.5350.519
  15. Hirokawa N (2000) A novel motor, KIF13A, transports mannose- 6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103, 569-581 https://doi.org/10.1016/S0092-8674(00)00161-6
  16. Jesuthasan S and Strahle U (1996) Dynamic microtubules and specification of the zebrafish embryonic axis. Curr Bio. 7: 31-42 https://doi.org/10.1016/S0960-9822(06)00025-X
  17. Kamimoto T, Zama T, Aoki R, Muro Y, and Hagiwara M (2001) Identification of a novel kinesin-related protein, KRMP1, as a target for mitotic peptidyl-prolyl isomerase Pin1. J Biol Chem 276: 37520-37528 https://doi.org/10.1074/jbc.M106207200
  18. Karcher RL, Deacon SW, and Gelfand VI (2002) Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 12: 21-27 https://doi.org/10.1016/S0962-8924(01)02184-5
  19. Khodjakov A, Lizunova EM, Minin AA, Koonce MP, and Gyoeva FK (1998) A specific light chain of kinesin associates with mitochondria in cultured cells. Mol Biol Cell 9: 333-343 https://doi.org/10.1091/mbc.9.2.333
  20. Kim AJ and Endow SA (2000) Kinesin family tree. J Cell Sci 113: 3681-3682
  21. Miki H, Setou M, Kaneshiro K, and Hirokawa N (2001) All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 98: 7004-7011
  22. Kull FJ, Sablin EP, Lau R, Fletterick RJ, and Vale RD (1996) Crystal structure of the kinesin motor domain reveals. Nature 380: 550-555 https://doi.org/10.1038/380550a0
  23. Lai F, Fernald AA, Zhao N, and Le Beau MM (2000) cDNA cloning, expression pattern, genomic structure and chromosomal location of RAB6KIFL, a human kinesin-like gene. Gene 248: 117-125 https://doi.org/10.1016/S0378-1119(00)00135-9
  24. Larabell CA, Torres M, Rowning BA, Yost C, Miller JR, Wu M, Kimelman D, and Moon RT (1997) Establishment of the dorso-ventral axis in Xenopus embryos in presaged by early asymmetries in b-catenin that are modulated by the Wnt signaling pathway. J Cell Biol 136: 1123-1136 https://doi.org/10.1083/jcb.136.5.1123
  25. Marszalek JR, Ruiz-Lozano P, Roberts E, Chien KR, and Goldstein LS (1999) Situs inversys and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA 96: 5043-5048
  26. Mizuno T, Yamaha E, Kuroiw, A, and Takeda H (1999) Removal of vegetal yolk causes dorsal deficiencies and impairs odrsalinducing ability of the yolk cell in zebrafish. Mech Dev 81: 51-63 https://doi.org/10.1016/S0925-4773(98)00202-0
  27. Moore JD and Endow SA (1996) Kinesin proteins: a phylum of motors for microtubule-based motility. BioEssays 18: 207-219 https://doi.org/10.1002/bies.950180308
  28. Nakagawa T, Setou M, Seog DH, Ogasawara K, Dohmae N, Takio K, and Ober EA and Schulte-Merker S (1999) Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish. Dev Biol 215: 167-181 https://doi.org/10.1006/dbio.1999.9455
  29. Ray RP and Schupbach T (1996) Intracellular signaling and polarization of body axes during Drosophila oogenesis. Genes Dev 10: 1711-1723 https://doi.org/10.1101/gad.10.14.1711
  30. Ro H, Jang Y, Rhee M (2004) The RING domain of Siaz, the zebrafish homologue of Drosophila seven in absentia, is essential for cellular growth arrest. Mol. Cells 17: 160-165
  31. Rowning BA, Wells J, Wu M, Gerhart JC, Moon RT, and Larabell CA (1997) Micro-tubule-mediated transport of organelles and localization of b-catenin to the future ddorsal side of Xenopus eggs. Proc Natl Acad Sci USA 94: 1224-1229
  32. Schier AF (2001) Axis formation and patterning in zebrafish. Curr Opin Gen Dev 11: 393-404 https://doi.org/10.1016/S0959-437X(00)00209-4
  33. Schneider S, Steinbeisser H, Warga RM, and Hausen P (1996) $\beta$- catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57: 191-198 https://doi.org/10.1016/0925-4773(96)00546-1
  34. Setou M, Nakagawa T, Seog DH, and Hirokawa N (2000) Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288: 1796-1802 https://doi.org/10.1126/science.288.5472.1796
  35. Sirotkin HI, Dougan ST, Schier AF, and Talbot WS (2000) bozozok and squint act in parallel to specify dorsal mesoderm and anterior neuroectoderm in zebrafish. Development 127: 2583-2592
  36. Sokol SY (1999) Wnt signaling and dorsoventral axis specification in vertebrates. Curr Opin Genet Dev 9: 405-410 https://doi.org/10.1016/S0959-437X(99)80061-6
  37. Takeda S, Yonekawa Y, Tanaka Y, Okada Y, Nonaka N, and Hirokawa N (1999) Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3$A^{-/-}$ mice analysis. J Cell Biol 145, 825-836 https://doi.org/10.1083/jcb.145.4.825
  38. Vale RD. and Fletterick RJ (1997) The design plan of kinesin motors. Annu Rev Cell Dev Biol 13: 745-777 https://doi.org/10.1146/annurev.cellbio.13.1.745
  39. Varjosalo M and Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22(18): 2454-2472 https://doi.org/10.1101/gad.1693608
  40. Verhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA, and Margolis B (2001) Cargo of kinesin identified as JIP scaffolding proteins and associated signaling moecules. J Cell Biol 152: 959-970 https://doi.org/10.1083/jcb.152.5.959
  41. Verhey KJ and Rapoport TA (2001) Kinesin carries the signal. Trends Biochem Sci 26: 545-549 https://doi.org/10.1016/S0968-0004(01)01931-4
  42. Weaver C, Farr GH III, Pan W, Rowning BA, Wang J, Mao J, Wu D, Li L, Larabell CA, Kimelman D. (2003) GBP binds kinesin light chain and translocates during cortical rotation in Zenopus eggs. Development 30: 5426-5436
  43. Wilkie GS and Davis I (2001) Drosophila singless and apir-rule transcripts localize apically by dynein-mediated transport of RNA particles. Cell 105: 209-219 https://doi.org/10.1016/S0092-8674(01)00312-9
  44. Wylie C, Kofron M, Payne C, Anderson R, Hosobuchi M, Joseph E, and Heasman J (1996) Maternal $\beta$-catenin establishes a dorsal signal in early Xenopus embryos. Development 122: 2987-2996