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Systems biology is a newly emerging biological field that
aims to understand various complex life phenomena at a
system level. The traditional biology has a tendency to
break down the observable life phenomenon into a list of
parts and for determining their interactions (reductionism),
whereas system biology attempts to describe the complex
and dynamic wiring of all the elements in a system and
detect the emergent properties of it (holism). Systems
biology has become realistic with the accumulation of large
mass of biological data by use of the high-throughput omics
technologies (e.g. genomics, transcriptomics, proteomics
and metabolomics). This review provides an overview of
major themes in the current research trends of systems
biology, summarizing some of major strategies to generate,
analyze and integrate the high-throughput data to make
them useful information capable of predicting complex
biological behaviors.

NETWORK ANALYSIS AND GENERATION OF
HIGH THROUGHPUT DATA

Discovering design principle in cellular systems has been
continuously studied in systems biology field since
beginning of this century (Kitano, 2002). The scale-free
topology of network has been reported in various cellular
systems (Albert et al., 2000; Jeong et al., 2000) and its
structural characteristics are extensively studied. Also
discoveries in identification of network motifs (simple
building blocks of network) such as feed-forward/feed-
back loops in the cellular regulatory network have been
made (Lee et al., 2002; Milo et al., 2002). Several studies
have sought to investigate the design principle underlying
dynamic network. Kwon and Cho (2008) found the various
feedback loops interlinked coherently in signaling networks
and suggested the coherently coupled feedback loop as the
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cellular design principles to stabilize and enhance the
signals. Legewie et al. (2008) studied design principles of
dynamic signaling pathway in mammalian systems and
showed evidence that an asymmetric negative feedback
regulation induced by a subset of signal inhibitor controls
the signaling pathway, whereas positive feedback plays no
role. Cellular systems have shown to be consisting of
modular structures and few of studies have examined
instances such as disease and condition-specific modularity
(Bar-Joseph et al., 2003; Hartwell et al., 1999; Thmels et al.,
2002; Ravasz et al., 2002). Recently, mictoRNA (miRNA-
small single-stranded ~22 nucleotides RNA) has been reported
to regulate gene expression. These miRNA are now known
to regulate cellular network such as transcription factor
network, signaling network and metabolic networks. The
role of miRNA in systems biology is elaborately reviewed
by Edwin Wang (2008).

High-throughput data generation for systems biology is a
continuously developing technology. The advent of
sophisticated omics technologies has facilitated efficient
handling of biological samples allowing measurement of
large data points. These technologies have enormously
reduced the time for generation and analysis of biological
data (Hardiman, 2004). In the following section, the recent
progress related to network analysis in various levels of
biological systems and some examples of recently-
developed instrumentation will be discussed.

Network analysis using transcriptomic data

Microarrays technology has been quite well established and
is highly successful in obtaining large-scale transcriptional
profiles since its emergence (Chee et al., 1996; Schena et
al., 1995). Currently microarray chips can accommodate
more than 200,000 spots. A single microarray chip can
generate genome scale transcriptome data and it has
become a core component of systems biology studies.
Either microarray chips could be custom-made to accormodate
the specific experimental requirements or commercially
available chips (e.g. Amersham, Agilent and Affymetrix
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chips) could be used for profiling mRNA, miRNA and
SNP, or for ChIP assay. However like any other successful
technology, microarrays also have potential problems
associated with the poor specificity, reproducibility, inter-
platform inconsistency. FDA in America has initiated
MAQC project which enforces a basic framework to ensure
high reliability of the technology (Shi et al., 2006).

There is a sign that an alternative method “tag sequencing’
could replace the microarray-based profiling soon. Using
the Solexa Genome Analyzer, t'Hoen et al. (2008} reported
that the transcript quantification by tag counting is more
reliable than the five different microarray platforms.
Hlumina has recently announced that the number of tags
produced with the existing and future instruments is
increasing and the cost per sequence run will eventually go
down.

With the rapid accumulation of high-throughput
transcriptomic data, many ingenious algorithms to infer the
genetic network have been also reported. Those algorithms
are cumulatively listed and described in the recent review
(Bansal et al., 2007). The research in transcriptomic
network analysis has been progressed from its basic
analysis of static networks to the advance analysis of the
condition-specific networks including network dynamics
and pathogenic networks. Recently, Busch et al. (2008)
reported that transcriptomic network dynamics for keratinocyte
migration. They combined the small-set of target genes for
keratinocyte migration with the modeling and finally
showed that the pulse-like activation of Met, the proto-
oncogene receptor, is important for the responsive state and
the EGF-receptor is required to initiate and maintain
migration of keratinocyte.

The re-interpretation of non-coding sequences, which
have been known to be a junk DNA before, has expanded
the transcriptomic network to the post-transcriptional level.
Some recent studies have shown the construction of post-
transcriptomic network together with the miRNA datasets.
Recently Brosh et al. (2008) reported that a family of 15
miRNAs play an important role in the post-regulation of
E2F and p53 target genes in the proliferation networks.
They emphasized that miRNAs are novel key players
crucial for regulation of transcriptomic network.

Network analysis using proteomic data

Proteome network analysis has also been remarkably
advanced with the rapid development of the various high-
throughput technologies such as yeast two hybrid (Y2H)
and affinity pull-down mass spectrometry (AP/MS). Also
similar to gene microarrays, protein chips have proved their
usefulness in identification of protein-protein interactions,
protein-phospholipid interactions, small molecular targets
and substrates for proteins kinases (Hall et al, 2007,
Templin et al., 2003). Many researchers have continuously

produced highly reliable datasets using the available
methods. One recent study evaluated the high-quality yeast
interactome across the multiple datasets, which were
generated by the different methods (Yu et al., 2008). In this
study, they suggested that Y2H outperform AP/MS at least
for the binary interaction. However they emphasized that
both methods could provide complementary information
about the interactome and are vital to obtaining a complete
picture of cellular protein-protein interaction networks.

Another study introduced the proteosome network
investigated by the quantitative analysis of tandem-affinity
purified cross-linked (x) protein complexes (QTAX)
(Guerrero et al., 2000, 2008), which has an advantage to
identify the weak or transient protein-protein interaction.
Guerrero et al. (2008) analyzed the proteome network
showing much increased sensitivity than previous reports.
Boxem et al. (2008) also contributed to the increased
sensitivity of protein interaction framed on domain-based
interaction. They applied this strategy to identify proteome
network of early embryonic cell division in C. elegans
showing higher sensitivity of QTAX derived networks over
the Y2H.

Network analysis using metabolomic data

Metabolomics is an emerging field that complements other
omics in systems biology field. A salient feature is that the
metabolite in the body fluids (e.g. blood or urine) can be
used as biomarker in noninvasive diagnostic tests. Similar
to transciptomics and proteomics, typically metabolomic
experiments will generate thousands of data points. Currently
metabolomic data sels are generated using capillary
electrophoresis (CE), Direct infusion of ESI (DIESI),
Fourier transform ion cyclotron resonance mass spectrometry
(FT-ICR-MS), Nuclear magnetic resonance (NMR). These
technologies are reviewed extensively elsewhere (Kell,
2004; Van Dien and Schilling, 2006). Metabolites are the
end-stage output of gene and protein-level processes. So in
obtaining system-level understanding of global regulation
of cellular metabolic networks, it becomes essential to
adopt integrative approach, which spans across various
biological levels involving transcriptomic and proteomic
networks for analysis. Recently Duarte et al. (2007)
investigated the global metabolic network in human which
was manually curated from literatures. Using gene expression
dataset with metabolic network, they showed evidence of
influences of gastric bypass surgery on skeletal muscle
metabolism. Ma et al. (2007) used a similar approach to
elucidate a bow-tie architecture of the metabolic network.
They found that an input of a wide range of nutrients could
produce a large variety of products using a relatively few
intermediates. Chechik et al. (2008) analyzed the influences
of transcriptional network dynamics on metabolic network
in S.cerevisiae. Their combined analysis suggested that cell
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system could choose the optimized activity motif (patterns
in the dynamic use of a network) in response to the various
conditions. For instances, forward activity motif is used to
produce metabolic compounds more efficiently, whereas
backward activity motif is used to rapidly stop the
production.

Comprehensive understanding of the disease
mechanism from network analysis

One of the most important emerging aspects of network
analysis is deciphering the pathogenic mechanism of
human disease. Recently, progress in this direction is
reported by Yang et al. (2008). They developed a novel
algorithm, multiple target optimal intervention (MTOI), to
infer optimal intervention points in the disease network
(inflammation related network). Their algorithm basically
finds optimum perturbation conditions to reverse diseased
state network into normal state network resulting in an
identification of the effective points of intervention and
combination of interventions. These intervention points can
be promising for drug targets which they claim to be
effective and safe. Another similar global network analysis
approach to screen the human disease genes is reported by
Wu et al. (2008). They developed CIPHER (Correlating
protein Interaction network and PHEnotype network to
pRedict disease genes) to discover the novel candidate
disease genes and their network in human disease. In their
published case study involving breast cancer, their
approach showed a success in identifying many of the
known breast cancer susceptibility genes such as BRCA1
and prediction of 15 novel breast cancer susceptibility
genes.

STRUCTURAL SYSTEMS BIOLOGY

One of the major goals of systems biology is to deduce the
behavior and emergent properties of a confined biological
system on the basis of their components (Kitano, 2002;
Levesque and Benfey, 2004; Rousseau et al., 2005; Pieper
et al., 2004). Therefore the nature of binding between the
components is an essential step for systems biology.
“Structural systems biology” could be defined as a process
of modeling protein interactions involved in the designated
biological complexes on the basis of known or predicted
molecular structures (Aloy and Russell, 2006). Previously
various protein interaction networks were obtained from
various species using both experimental and computational
methods (e.g. Uetz et al., 2000). However, precise molecular
details for the interactions are available for only limited
number of cases (Rousseau et al., 2005; Pieper et al., 2004;
Aloy and Russell, 2006). Precise 3D structures solved by
X-ray crystallography and NMR spectroscopy provide the
crucial atomic details of protein bindings. In light of the
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difficulties in obtaining large amounts of structural information
regarding to protein assemblies, the computational prediction
methods have become essential for structural systems
biology. As of December 9, 2008, total 54,699 protein
structures in various species have been reported. The
majority of structures have been determined by X-ray
crystallography and NMR spectroscopy (RCSB PDB).
Only a part of them are related to complex structures.
‘Structural genomics’ consortiums have been organized
for determination of the 3D structures of all proteins in a
given organism by X-ray crystallography, NMR spectroscopy
and computational methods. Structural genomics projects
have emphasized high-throughput determination of protein
structure. This has been performed in dedicated centers
(e.g. SGC, http://www.sgc.utoronto.ca/, PSI, http://www.
nigms.nih.gov/psi/, CESG http://www.uwstructuralgenomics.
org/, RIKEN SGPI, http://www.rsgi.riken.go.jp/, PSE, http:/
/www.proteinstrukturfabrik.de/, OPPFE, http://www.oppf.
ox.ac.uk/, SPINE, http://www.spineurope.org/). As of
December 9, 2008, 7225 protein structures are solved and
the structural information is now available to the public.
However, lack of the functional data is problematic to the
proteins. It is interesting that RIKEN SGPI has been the
most productive consortium so far (total 2,658 protein
structures have been reported as of December 9, 2008).

Structural determination of protein assembly by use
of cryo-EM and computational methods

As described above, the individual protein structure can be
determined now in a relatively short time, with the help of
sufficient material prepared using modern expression and
purification techniques. However, a setting-up both purification
and crystallization conditions for protein complexes are an
extraordinary task, and it may require many years of efforts.
Therefore, there will be an enormous time gap between the
progress in developing protein networks from high-
throughput data and the progress of complex 3D structures.
In fact, the human intercome project is now in the fast pace
and it will be soon obvious that lack of 3D complex
structures will be a bottleneck for understanding the
mechanisms of protein assemblies. The 3D structures of
protein assembly could provide information on the strength
of interactions. For instance, domain-domain interaction is
stronger than domain-peptide interaction. If the peptide is
phosphorylated, the interaction strength could be enhanced
as compared with the unphosphorylated one. Computational
approaches have become important to determine the protein
interactions in a confined biological system (Marcott et al.,
1999: Garvin et al., 2006; Lu et al., 2003). An example of
the computational method is to predict the structure of
binding motif by homology modeling and predict the
binding partners by the method of ‘Docking’ (Gray, 2006).
Some groups have developed methods predicting atomic
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details for pairs of interacting proteins and combined
docking with chemical shifft NMR experiments (e.g.
HADDOCK, http://www.nmr.chem.uu.nl/haddock) (Lu et
al, 2003). If the similar structural information is not
available, then the domain structures are analyzed
bioinformatically and the domain-domain interactions are
investigated on the basis of already reported information
(InterPReTS, http:/interprets.embl.de) (Sprinzak et al.,
2001). Peptides having a particular domain could share a
consensus sequence pattern or linear motif for predicting
binding partner (NetPhos, http:/www.cbs.dtu.dk/services/
NetPhos; PhosphoELM, http://phospho.elm.eu.org; iSPOT,
http://cbm.bio.uniroma2.it/ispot) (Neduva et al., 2005).

Constructing protein assembly models with hybrids
of high and low resolution techniques

Putative structural models of protein assemblies can be
obtained by combination of high and low resolution
techniques (Aloy and Russell, 2002; Aloy et al., 2004;
Joshi-Tope et al., 2005). Previous studies have used the
hybrid methods for determining the structure of small
nuclear ribonucleoprotein particles (snRNPs) which bind
pre-messenger RNA to form spliceosome (Aloy and
Russell, 2006). For the structural analysis, various methods
such as X-ray crystallography, cryo-electron microscope,
chemical crosslinking were used. The hybrid approaches
have been used to propose structures of other big molecular
complexes (Aloy and Russell, 2006). Cryo-EM is a useful
method to catch protein complexes in different conformational
states (Muller et al, 2008). The ryanodine receptor
(monomeric form: 550 kDa), an intracellular Ca** release
channel is one of the hub proteins and bind various
signaling proteins such as calmodulin and FKBP
(Shreenivasaiah et al., 2008). We have attempted to build
up an assembly model using various methods such as X-ray
crystallography, cryo-EM and the computational docking
methods (Lu et al., 2003). It is also useful to combine the
signaling or pathway map with known 3D structures of
participating molecules. We could get insights in the
mechanisms regarding to how hub proteins interact with
other proteins in the signaling cascade. The structural
approaches could also lead to understanding the time-
dependent changes of the interactions between the
signaling proteins. Knowing strength of interactions in a
particular system could help design therapeutic drugs to
control the pathways on purpose.

Electron tomography-‘Seeing is believing’

Electron tomography utilizes a tomography technique
along with electron microscope to obtain 3D structures of
macromolecules. In principle, electron beams are passed
through the sample with increasing degrees of rotation
around the sample. The collected information on the

images is used to construct a 3D image of the molecules.
The resolution of electron tomography systems has increased
to 5-20 nm range which is suitable for examining multi-
protein structures (Medalia et al., 2002; Nickell et al., 2006;
Melo et al., 2008; Sali et al., 2003). Currently electron
tomography study is going on various topics at the
molecular resolution. For example, 3D structure of protein
complexes such as ribosome can be visualized with other
proteins nearby. It is possible in the near future that the hub
proteins in the protein networks are directly compared with
their 3D structures and the in sifu locations in the different
cells (Aloy and Russell, 2006). Since more realistic 3D cell
images could be produced by this method, the physical
properties such as diffusion constant and compartmentarization
may be detected with the calculated dimensions (MCell,

http://mecellicnl.salk.edu).
DATA INTEGRATION

As described earlier, systems biology is basically an
approach to produce useful hypothesis and theories using
different levels of information pertaining to genes, mRNAs,
proteins, and pathways. An enormous challenge that needs
to be addressed is rigorous integration of heterogeneous
data from the discrete levels. Figure 1 describes the
importance of data integration and data management in
context of systems biology research. Methodologies and
computational tools that can use the multi-level data and
generate comprehensive biological insights by integrating
them is an immediate need. Technical challenges of data
integration in systems biology are mainly along four lines:
1) data gathering, representation and validation; 2) tools
and resources for data integration; 3) database integration
and web technologies; and 4) data integration and analysis
methodologies. Addressing these issues will assist in easy
multi-level data integration and result in insightful
biological discoveries.

Data gathering, representation and validation

Iterative cycles in systems biology process involve matching
the data and model, which is rarely simple (Jagaman and
Danuser, 2006). The datasets from disparate (technologies
and instrumentation) sources are often incomplete, not
standardized, improperly annotated. Increased propensity
of using poor quality data in work process could conduce in
inconclusive or wrong results. An effective way would be
to employ state of the art sensing, measurement and data
processing technologies that could accurately capture
precision experimental data. An emphasis should be more
on context-based biological measurements than accumulation
of biological data regardless of any intended use (Albeck et
al., 2006; Waters et al., 2006). It is also essential that error
with measurement must be determined and a metrics be put
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Fig. 1. Data Integration and data management is an integral part of iterative systems biology framework. Systems biology is an iterative
approach requiring building an initial model with available experimental data. The model is used to arrive at meaningful predictions which could
be compared to experimental data. In case of any inconsistencies either model could be refined to fit the data or new experiments could be
designed, to generate suitable data for refining the model or to test the new resulting hypothesis by simulations. The above cycle is repeated
until a reasonable agreement is achieved between model and experimental data leading to new knowledge. In each of these iterative steps
(experiments, modeling and knowledge generation) data is used and also new data is generated which then may be subsequently utilized in
other steps. Efficient and comprehensive management of the data thus is crucial for systematic research in systems biology.

in place for the validation of large data sets. Considering
time and cost factors, successful economical strategies can
be adopted in designing experiments (Albeck et al., 2006).
Supporting computational infrastructure should not only
assist in efficient data capturing, but also should adopt
consensus standards for the interpretation, handling and
dissemination of data maximizing interoperability, accuracy
and completeness. Several standardized formats for
representation of data have been currently developed. Few
examples of most widely used formats are: MIAME for
microarray experiments, PSI-MI for protein-protein interaction,
BIOPAX for pathways, MIRIAM for biochemical models
and SBML/CelIML for machine readable qualitative and
quantitative model formats. Refer to review by Stromback
and Lambrix (2005) for comparison and evaluation of
several of these formats. Ontologies being structured
vocabularies capturing the domain knowledge have proved
to be highly advantageous in facilitating semantic-level
data integration. Data fusion of heterogeneous datasets into
self-consistent sets is crucial and ontologies proved to have
tremendous advantage in this regard (Waters et al., 2006).
Several analysis methodologies (e.g Gene enrichment
analysis (Holden et al., 2008; Lin et al., 2008)) are using
ontology’s structure, relationship and associations to

elucidate new biological knowledge from the existing data.
Ontologies are in turn used to represent and annotate newly
generated data thus maximizing reuse and knowledge
utilization (Tu et al., 2008). Consortium such as Open
Biomedical Ontologies (OBO) has played a major role in
development and as a resource for distribution of bio-
ontologies (Leontis et al., 2006; Smith et al., 2007). Few of
the well known ontologies that are often used in systems
biology research are: Gene Ontology (GO), MGED
Ontology for microarray experiments, Protein Ontology
(PO), Pathway Ontology and Systems biology Ontology.
Several of the important biomedical ontologies are
reviewed elsewhere (Bard and Rhee, 2004; Blake and Bult,
2006; Rubin et al., 2008).

Database integration, tools and web technologies

Another critical need for data integration is an integrated
database holding raw and curated datasets. Such databases
should enable rapid submission, meaningful data merging,
efficient storage and speedy comprehensive retrieval of
data. Centralized databases can hold global data as well as
in-house research data can expedite access to information
from various areas of research and facilitate selective
mining, cross-correlation and analysis (Stein, 2003). A
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coherent contextual metadata must be curated and made
accessible regarding the data stored in the databases.
Several general databases have been successful in
facilitating such data source integration (Flicek et al., 2008;
Lenhard et al., 2003; Safran et al., 2002; Sayers et al., 2008;
Sugawara et al., 2008). However some of these databases
do have potential problems; they are biased to some
biological processes and many important molecular entities
are not yet sufficiently covered. Many of the general
databases do not hold datasets that can be readily available
for systems biology like networks, pathways, quantitative
parameters and model information. In such scenario
recommended approach would be development of context-
dependent integrative databases which can focus on
expediting rich data in specific context which could be
readily consumed in systems research. Recently several
such efforts have been initiated (Choi, 2007 ;Kahlem and
Birney, 2007; Lynn et al., 2008; Zhang et al,, 2007,
CIDMS, http:/cidms.org ). Recent advances in internet
technologies like web service can now support machine-to-
machine interoperability. It can be exploited to integrate
distributed specialized databases (Kahlem and Birney,
2007) and also modeling and analysis tools could use these
services to get data directly into working environment
minimizing time to data transfers and data format
incompatibility issues (Cerami et al., 2006; Funahashi et al.,
2007; Xia and Dickerson, 2008). Few other tools even
provide the user functionalities for data management,
retrieval, and visualization and integration capabilities
(Cline et al., 2007; Shah et al., 2007; Toyoda et al., 2007,
Wright and Wagner, 2008).

Data integration and analysis methodologies

Until now, the integration efforts have proved successful in
each of the constituent levels under the preview of systems
biology. Few of the most successful methods that are
extensively used today are: 1) Pattern analysis of gene/
protein expression data using microarray/mass spectrometry
to identify differentially expressed genes/protein in a
sample of interest yielding component data and/or interaction
data; and 2} Clustering strategies to elucidate functional
modules (functional states such as phenotypes) from the
expression data with similar responses to perturbations.
Often these gene expression analyses are combined with
other advanced analysis strategies (e.g. promoter analysis:
to establish a map of transcription binding sites in promoter
regions in order enhance knowledge about mechanisms of
gene expression regulation). Several other methodologies
are extensively discussed in reviews elsewhere (De
Keersmaecker et al., 2006; Joyce and Palsson, 2006).
Recently Ishii et al (2007) generated system wide multi-
level (including transcriptome, proteome, metabolome and
interactome) quantitative datasets focused on central

carbon metabolism of a bacterial cell. This is probably first
quantitative dataset that includes parts and also functional
state (interactions and interaction types) of a cell
metabolomics. With this high quality data, it is possible to
elucidate how static parts and topology of a network
contribute to emergence of functional states in a dynamic
network. Although individual analysis at each of these
levels undoubtedly results into interesting finding, it is only
by integrating each of these omics data will aid in gaining a
system level insight into complex cellular behavior.

Given the abundant multi-level data from various experiments
and databases, the most important task is development of
the theoretical and experimental methodologies, which can
efficiently integrate and analyze the data. However currently
there are only few developed methodologies that can utilize
combined data from multiple levels (Ishii et al., 2007; Liu
and Zhao, 2004; Murray et al., 2007; Stemke-Hale et al.,
2008). Murray et al (2007) combined metabolomic,
transcriptional data and statistical analyses of transcriptional
factor activity. They identified oscillatory parameters and
constructed a large-scale yeast interaction network which
was then used to identify crucial features that are important
for respiratory oscillations. An integrative genomic and
proteomic analysis conducted by Stemke-hale et al (2008)
led to showing that PI3K pathway aberrations are common
in breast cancer and PI3K targeted drugs are potentially
important. Few other analytical approaches and methodologies
for multi-level data integration are reviewed elsewhere
(Cox et al., 2005; Joyce and Palsson, 2006; Sauer et al.,
2007). Experimental data generated using different
technologies and differing levels of measuring precession
and coverage, results in inherent data discrepancies such as
systemic biases and high false positive and false-negatives
rates. But to assess the relationship between multiple
biological levels in an effort to extract discernable biological
meaning, such hurdles should be aptly addressed. Hwang et
al. (2005a and b) have developed methodology that can
integrate data from existing and future technologies
ensuring selection of accurate (true-positive) data sets.
They have also demonstrated applicability of their
approach in systems biological context.

MODELING PROCESSES

Mathematical (Dynamic systems) modeling

In the post-genome era, theoretical approaches involving
unambiguous representations and predictions of a novel
biological mechanisms based on existing knowledge have
become more important. Although huge amount of data is a
necessity, as mentioned earlier, they themselves are often
problematic, because of their sheer size, inconsistencies and
less comprehensive (Bray, 2001). Since mathematical
modeling is able to provide a framework to represent
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Fig. 2. Classifications of modeling in systems biology. Diverse spectrum of modeling based on availability of equation parameters. This
classification was described in previous review paper by Ideker and Lauffenburger (2003). Diverse spectrum of modeling based on ease of
modeling. At the difficult level of modeling, the abstract mathematical equations should be written representing biological processes by the
modeler himself. Although there is more flexibility of what can be achieved, a substantial expertise in various mathematical methodologies is
expected. Also model reusability is limited as in different set of equations have to be rewritten if one decided to change underlying mathematical
methodology (e.g. deterministic to stochastic vice versa). The next level is the computational modeling. Researchers utilize specialized software
packages to represent the biological processes through equations in a form that is more meaningfut to them. The computer in turn will generate
mathematical equations. The easiest level of modeling is visual modeling. Researchers use graphical notations to represent the biological
knowledge and enter required parameters in a user friendly software environment. The visual modeling software package (e.g. CellDesigner)
translates the graphical notations into mathematical equations and render it ready for simulations.

empirical observations in a physically and biologically functionality, reliability, efficiency, user-friendliness and
realistic manner and generate novel and useful hypothesis, compatibility (Alves et al., 2006). In the previous sections,
it play an instrumental role in system-level understanding we covered network modeling mainly focusing on topological
of complex biological processes. Several comprehensible  design principles and structural characterization; here in
review papers are published focusing on mathematical this section general aspects of mathematical modeling
modeling including model construction, model verification, useful from the perspective of dynamic systems modeling
model analysis, model regression and model validation that ~ will be briefly discussed.

can serve as good guide for non-expert (Aldridge et al.,

2006; Jagaman and Danuser, 2006). Figure 2 lists few of Trends in mathematical modeling efforts

the existing modeling methodologies and their classification. A number of dynamic computational models have been
Furthermore computational tools have become integral part developed and used as a power tool for testing hypotheses
of mathematical modeling process and they can help non- about biological system. Recently, Andersen et al. (2008)
mathematicians by assisting in daunting task of translating published manually reconstructed largest metabolic network
biochemical equations/diagrams into mathematical equations. model of 4. niger (fungus) by integrating the genome,

Several tools exist which incorporates multitude of  reactome and metabolome data from bibliome (totality of
functionalities to suit to different modeling and analysis  biological text corpus). This network along with the known
needs. We have compiled an exhaustive list of the useful data on fluxes, yields and transcription was used to
software packages, databases and web sites previously construct the mathematic model, which they used to
(Shreenivasaiah et al., 2008). Alves ef al. (2006) has examine system-wide data in metabolic context. The model
reviewed comparisons and evaluation of 12 useful kinetic accurately predicted many of the experimental results
modeling software packages with respect to their  already published pertaining to yields and flux distributions.
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Further systematic perturbation analysis on model resulted
in new information on physiological traits of A. niger which
could be readily exploited for high yields in biotechnology
industries.

Dynamic systems responses to various environmental
stimuli can be elucidated by systems modeling of signaling
pathways. Such mode! construction is feasible for sensitivity
and stability analysis which can result in wealth of
information such as behavior changes when stimuli and rate
constants are modified (Kitano, 2002). Birtwistle et al.
(2007) developed a computational ErbB signaling pathway
(has key role in tumorigenesis) model composed of all four
ErbB receptors, and corroborated the prediction results with
traditional experiments. They compared the stabilities of
different sub-networks by performing stability analysis and
drew a conclusion that heregulin-dependent extracellular-
signal-regulated kinase activation is more stable than
epidermal growth factor-dependent activation. This model
could help in gaining mechanistic insight into ligand-
dependent response of ErbB signaling. Li et al. (2006)
developed the stochastic model describing synthesis and
uptake of AI-2 by bacteria, which is reported as a
‘universal’ signal molecule when bacteria are sensing the
environmental cues. Using this mathematical model and
testable hypothesis, they discovered the existence of an
alternative pathway for AI-2 synthesis which was unable to
be discovered by any of the reductionist approaches. All of
these studies mentioned here nicely illustrate the value of
quantitative modeling in guiding and interpreting experimental
data collection. Similar results and conclusions could not
have been drawn based solely on traditional approaches.
However such comprehensive assessments and explanations
come at a price that often these models need tens or even
hundreds of parameters which are difficult to obtain, as
high throughput methods for measuring biochemical
parameters remain limited. Furthermore, since these
parameters significantly affect model behavior, the values
measured in vitro may produce inaccurate results in an in
vivo application.

Visual modeling

Visual modeling is a rather unambiguous representation of
system components and interactions using graphical notations
for easy understanding and more efficient and accurate
transmission of biological knowledge. Several graphical
notations for molecular interactions and pathway diagram
are proposed by different groups (Kohn, 2001; Pirson et al.,
2000); among them most widely used notation are those
proposed by Kitano which then later became basis for
Systems Biology Graphical Notation (SBGN) initiative.
Currently SBGN is considered as the standard for graphical
notation used in diagrams of biochemical and cellular
processes studied in systems biology. CellDesigner, a tool

for visual process modeling is developed and maintained by
Kitano’s group (Oda et al, 2005) which implements
SBGN. Other tools frequently used for visual modeling are
Cytoscape, JDesigner, Ingenuity pathway analysis and
Pathway studio. These software has facilitated construction
of large scale signaling pathway maps, most of which are
available online freely (Calzone et al., 2008; Oda and
Kitano, 2006; Oda et al., 2005). Further, in order to equip
the tools with additional functionalities often plug-ins are
developed and distributed (Erhard et al., 2008; Funahashi et
al., 2007). PANTHER pathway database is one of the
largest pathway databases. It is equivalent to online/web
version of CellDesigner (Mi et al., 2005). All of these user
friendly tools enables development of mathematical models
feasible for biologist without much modeling experience.

CONCLUDING REMARKS

Systems biology is one of the most widely discussed fields
during the post-genomic era. Currently, the systems
biological research efforts are focused on investigating the
components of cellular networks and their interactions
using the data obtained from various high-throughput
technologies. A rapid progress has also been made in
production of various computational algorithms that are
used to examine the detailed network structures. In the
future, continuous efforts will be made to develop different
types of models to integrate the complex biological data, so
that the complex life phenomena can be visualized and
understood in a relatively comprehensive way. The
information on the detailed protein complex structures and
the way how to produce the assemblies will be determined
not only by the biophysical methods such as X-ray
crystallography, but also by the state of the art new
technology such as electron tomography.
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