Generation and Characterization of Monoclonal Antibodies against Human Interferon-lambda1

  • Hong, Seung-Ho (Department of Microbiology and Immunology, Ajou University School of Medicine) ;
  • Kim, Jung-Sik (Department of Microbiology and Immunology, Ajou University School of Medicine) ;
  • Park, Sun (Department of Microbiology and Immunology, Ajou University School of Medicine)
  • Published : 2008.03.30

Abstract

Background: Members belonging to the interferon-lambda (IFN-${\lambda}$) family exert protective action against viral infection; however, the mechanisms of their action have remained elusive. To study IFN-${\lambda}$ biology, such as endocytosis of IFN-${\lambda}$, we produced monoclonal antibodies (Abs) against human IFN-${\lambda}$ and examined their usefulness. Methods: We purified recombinant human IFN-${\lambda}$1 expressed in Escherichia coli by using affinity columns. Then, we generated hybridoma cells by fusing myeloma cells with splenocytes from IFN-${\lambda}$1-immunized mice. For evaluating the neutralizing activity of the monoclonal Abs against IFN-${\lambda}$1, we performed RT-PCR for the MxA transcript. In order to study the binding activity of IFN-${\lambda}$ and the monoclonal Ab complex on HepG2 cells, we labeled the monoclonal Ab with rhodamine and determined the fluorescence intensity. Results: Four hybridoma clones secreting Abs specific to IFN-${\lambda}$1 were generated and designated as HL1, HL2, HL3, and HL4. All the Abs reacted with IFN-${\lambda}$1 in the denatured form as well as in the native form. Abs produced by HL1, HL3, and HL4 did not neutralize the induction of the MxA gene by IFN-${\lambda}$1. We also demonstrated the binding of the HL1 monoclonal anbitody and IFN-${\lambda}$ complex on HepG2 cells. Conclusion: Monoclonal Abs against IFN-${\lambda}$1 were produced. These Abs can be used to study the cellular binding and internalization of IFN-${\lambda}$.

Keywords

References

  1. Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JA, Sheikh F, Dickensheets H, Donnelly RP. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4;69-77, 2003 https://doi.org/10.1038/ni875
  2. Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, Kuestner R, Garrigues U, Birks C, Roraback J, Ostrander C, Dong D, Shin J, Presnell S, Fox B, Haldeman B, Cooper E, Taft D, Gilbert T, Grant FJ, Tackett M, Krivan W, McKnight G, Clegg C, Foster D, Klucher KM. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4;63-68, 2003 https://doi.org/10.1038/ni873
  3. Dumoutier L, Lejeune D, Hor S, Fickenscher H, Renauld JC. Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3. Biochem J 370;391-396, 2003 https://doi.org/10.1042/BJ20021935
  4. Uze G, Monneron D. IL-28 and IL-29: newcomers to the interferon family. Biochimie 89;729-734, 2007 https://doi.org/10.1016/j.biochi.2007.01.008
  5. Ank N, West H, Bartholdy C, Eriksson K, Thomsen AR, Paludan SR. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol 80;4501-4509, 2006 https://doi.org/10.1128/JVI.80.9.4501-4509.2006
  6. Marcello T, Grakoui A, Barba-Spaeth G, Machlin ES, Kotenko SV, MacDonald MR, Rice CM. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131;1887-1888, 2006 https://doi.org/10.1053/j.gastro.2006.09.052
  7. Robek MD, Boyd BS, Chisari FV. Lambda interferon inhibits hepatitis B and C virus replication. J Virol 79;3851-3854, 2005 https://doi.org/10.1128/JVI.79.6.3851-3854.2005
  8. Holzinger D, Jorns C, Stertz S, Boisson-Dupuis S, Thimme R, Weidmann M, Casanova JL, Haller O, Kochs G. Induction of MxA gene expression by influenza A virus requires type I or type III interferon signaling. J Virol 81;7776-7785, 2007 https://doi.org/10.1128/JVI.00546-06
  9. Hong SH, Cho O, Kim K, Shin HJ, Kotenko SV, Park S. Effect of interferon-lambda on replication of hepatitis B virus in human hepatoma cells. Virus Res 126;245-249, 2007 https://doi.org/10.1016/j.virusres.2007.03.006
  10. Mennechet FJ, Uze G. Interferon-lambda-treated dendritic cells specifically induce proliferation of FOXP3-expressing suppressor T cells. Blood 107;4417-4423, 2006 https://doi.org/10.1182/blood-2005-10-4129
  11. Jordan WJ, Eskdale J, Srinivas S, Pekarek V, Kelner D, Rodia M, Gallagher G. Human interferon lambda-1 (IFN-lambda1/IL-29) modulates the Th1/Th2 response. Genes Immun 8;254-261, 2007 https://doi.org/10.1038/sj.gene.6364382
  12. Chi B, Dickensheets HL, Spann KM, Alston MA, Luongo C, Dumoutier L, Huang J, Renauld JC, Kotenko SV, Roederer M, Beeler JA, Donnelly RP, Collins PL, Rabin RL. Alpha and lambda interferon together mediate suppression of CD4 T cells induced by respiratory syncytial virus. J Virol 80;5032-5040, 2006 https://doi.org/10.1128/JVI.80.10.5032-5040.2006
  13. Coccia EM, Severa M, Giacomini E, Monneron D, Remoli ME, Julkunen I, Cella M, Lande R, Uze G. Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol 34;796-805, 2004 https://doi.org/10.1002/eji.200324610
  14. Yang K, Puel A, Zhang S, Eidenschenk C, Ku CL, Casrouge A, Picard C, von Bernuth H, Senechal B, Plancoulaine S, Al-Hajjar S, Al-Ghonaium A, Marodi L, Davidson D, Speert D, Roifman C, Garty BZ, Ozinsky A, Barrat FJ, Coffman RL, Miller RL, Li X, Lebon P, Rodriguez-Gallego C, Chapel H, Geissmann F, Jouanguy E, Casanova JL. Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/beta and -lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity 23;465-478, 2005 https://doi.org/10.1016/j.immuni.2005.09.016
  15. Onoguchi K, Yoneyama M, TakemuraA, Akira S, Taniguchi T, Namiki H, Fujita T. Viral infections activate types I and III interferon genes through a common mechanism. J Biol Chem 282;7576-7581, 2007 https://doi.org/10.1074/jbc.M608618200
  16. Osterlund PI, Pietila TE, Veckman V, Kotenko SV, Julkunen I. IFN regulatory factor family members differentially regulate the expression of type III IFN (IFN-lambda) genes. J Immunol 179;3434-3442, 2007 https://doi.org/10.4049/jimmunol.179.6.3434
  17. Diebold SS, Montoya M, Unger H, Alexopoulou L, Roy P, Haswell LE, Al-Shamkhani A, Flavell R, Borrow P, Reis e Sousa C. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424;324-328, 2003 https://doi.org/10.1038/nature01783
  18. Contoli M, Message SD, Laza-Stanca V, Edwards MR, Wark PA, Bartlett NW, Kebadze T, Mallia P, Stanciu LA, Parker HL, Slater L, Lewis-Antes A, Kon OM, Holgate ST, Davies DE, Kotenko SV, Papi A, Johnston SL. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med 12;1023-1026, 2006 https://doi.org/10.1038/nm1462