DOI QR코드

DOI QR Code

Effect of Elevated Carbon Dioxide Concentration and Temperature on Yield and Fruit Characteristics of Tomato (Lycopersicon esculentum Mill.)

이산화탄소 및 온도 상승이 토마토 수량 및 과실특성에 미치는 영향

  • Lee, In-Bog (National Institute of Horticultural and Herbal Science, RDA) ;
  • Kang, Seok-Beom (National Institute of Horticultural and Herbal Science, RDA) ;
  • Park, Jin-Myeon (National Institute of Horticultural and Herbal Science, RDA)
  • 이인복 (농촌진흥청 국립원예특작과학원 원예특작환경과) ;
  • 강석범 (농촌진흥청 국립원예특작과학원 원예특작환경과) ;
  • 박진면 (농촌진흥청 국립원예특작과학원 원예특작환경과)
  • Published : 2008.12.31

Abstract

The objective of this study is to investigate the effect of the level of $CO_2$ (370 and $650{\mu}mol\;mol^{-1}$) and temperature (ambient and ambient+$5^{\circ}C$) on tomato growth and fruit characteristics as affected by the application rate of N-fertilizer (68 and $204\;N\;kg\;ha^{-1}$), for the purpose of evaluating the influence of elevated $CO_2$ and temperature on tomato crop. The elevated atmospheric $CO_2$ and temperature increased the plant height and stem diameter for tomato crop, while the differences among the nitrogen(N) application rates were not significantly different. Under the elevated $CO_2$, temperature, and a higher N application rate, the biomass of aerial part increased. The fruit yield showed the same result as the biomass except for the elevated temperature. The elevated temperature made the size of fruit move toward the small, but the elevated $CO_2$ and the application of N-fertilizer were vice versa. The sugar content and pH of fruit juice were affected by nitrogen application rate, but not by the elevated $CO_2$ and temperature. These results showed that both the elevated $CO_2$ and temperature stimulated the vegetative growth of aerial parts for tomato, but each effects on the yield of fruit showed an opposite result between the elevated temperature and $CO_2$. In conclusion, the elevated $CO_2$ increased tomato yield and the ratio of large size of fruit, but the elevated temperature did not. Therefore, to secure the productivity of tomato as nowadays in future environment, it will need to develop new breeder as high temperature-tolerable tomato species or new type of cropping systems.

이산화탄소 상승에 따른 지구온난화 환경이 토마토의 생육반응에 미치는 효과를 검토하기 위하여 대기 중 이산화탄소농도(370과 $650{\mu}mol\;mol^{-1}$)와 온도수준(대기온도와 대기온도+$5^{\circ}C$)을 달리하면서 질소 처리수준(68과 $204\;kg\;N\;ha^{-1}$)별 토마토의 생육,수량 및 과실크기 분포 등을 조사하였다. 대기 중 이산화탄소 농도와 온도 증가는 토마토의 초장과 경경을 증가시켰으나, 질소처리에 따른 초장과 경경 변화는 뚜렷한 경향이 없었다. 토마토의 지상부 중량은 상승 이산화탄소와 상승 온도 조건하에서, 그리고 높은 농도의 질소처리로 증가하였다. 토마토의 과실 수량은 높은 질소농도 조건하에서 그리고 상승 이산화탄소 환경 하에서 증가하였으나, 상승온도 환경 하에서는 감소하였다. 토마토 과실의 크기분포는 대기온도 증가로 인해 소형과의 비율이 증가하고 대형과는 감소하였으며, 이산화탄소 증가로 인해 소형과는 감소하고 초대형과는 증가한 반면, 질소처리는 대형과와 초대형과의 비율을 크게 하였다. 과실의 당도와 산도는 상승 이산화탄소와 상승 온도 처리로 현저한 차이가 없었으나, 질소처리 농도증가로 인해 당도는 증가하고 과실즙액의 pH는 감소하였다. 결과적으로 온도 상승은 과실 수량과 과실 크기를 감소시키나, 상승 이산화탄소는 과실 수량과 과실의 크기를 증대시키므로 온난화 환경 하에서 안정적인 토마토 생산을 위해서는 고온 적응성 품종을 육성하거나 새로운 재배기술 개발이 필요함을 의미한다.

Keywords

References

  1. Idso, S. B. (1980) The climatological significance of a doubling of Earth's atmospheric carbon dioxide concentration, Science. 207, 1462-1463 https://doi.org/10.1126/science.207.4438.1462
  2. Idso, S. B. (1982) A surface air temperature response function for Earth's atmospheric, Boundary-Layer Meteorol. 22, 227-232 https://doi.org/10.1007/BF00118255
  3. IPCC(Intergovernmental Panel on Climate Change). (2001) Special Report on Emissions Scenarios (SRES) - Climate Change 2001: Impacts, Adaptation and Vulnerability, IPCC
  4. Kimball, B. A. (1983) Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations, Agron. J. 75, 779-788 https://doi.org/10.2134/agronj1983.00021962007500050014x
  5. Lee, Y. B. and Lee, B. Y. (1994) Effect of long term $CO_2$ enrichment on chlorophyll, starch, soluble protein content, and RUBPCase activity in tomato plants, J. Kor. Soc. Hort. Sci. 35, 309-317
  6. Ewart, A. J. (1986) On assimilatory inhibition, J. of the Linnean Soc. 31, 364-461
  7. Warren-Wilson, J. (1966) An analysis of plant growth and its control in arctic environments, Annals of Bot. 30, 383-402
  8. Wildman, S. G. (1967) The organization of granacontaining chloroplasts in relation to location of some enzymatic systems concerned with photosynthesis, protein synthesis and ribonucleic acid synthesis, pp. 295-319. In: Goodwin, T. W.(ed.). Biochemistry of chloroplasts, Vol. 2. Proceedings NATO Advanced Study Institute (Aberystwyth), New York Academic Press
  9. Neales, T. F. and Incoll, L. D. (1968) The control of leaf photosynthesis rate by the level of assimilate concentration in the leaf: a review of the hypothesis, Bot. Rev. 34, 107-125 https://doi.org/10.1007/BF02872604
  10. Paul, M. J. and Foyer, C. H. (2001) Sink regulation of photosynthesis, J. of Exp. Bot. 360, 1383-1400
  11. Lee, Y. B. and Lee, B. Y. (1994) Effect of long term $CO_2$ enrichment on leaf temperature, diffusion resistance, and photosynthetic rate in tomato plants, J. Kor. Soc. Hort. Sci. 35, 421-428
  12. Ho, L. C. (1977) Effect of $CO_2$ enrichment on the rates of photosynthesis and translocation of tomato leaves. Ann. Applied Biol. 87, 191-200 https://doi.org/10.1111/j.1744-7348.1977.tb01875.x
  13. RDA(Rural Development Administration) (1999) Recommended standard fertilization for crops, RDA, Korea
  14. RDA(Rural Development Administration) (1988) Method of Soil Chemical Analysis, RDA, Korea
  15. Wang, Z., Yuan, Z. and Quebedeuax, B. (1997) Photoperiod alters diurnal carbon partitioning into sorbitol and other carbohydrates in apple, Aust. J. Plant Physiol. 24, 587-597 https://doi.org/10.1071/PP96134
  16. Luft, J. H. (1973) Compounding of Luft's epon embedding medium for use in electron microscopy with reference to anhydride: epoxide ratio adjustment, Mikroskopie. 29, 337-342
  17. Locascio, S. J., Olson, S. M. and Rhoads, F. M. (1989) Water quantity and time of N and K application for trickle-irrigated tomatoes, J. Am. Soc. Hort. Sci. 114, 265-268
  18. Kimball, B. A., Kobayashi, K. and Bindi, M. (2002) Responses of agricultural crops to free-air $CO_2$ enrichment, Adv. in Agron. 77, 293-367 https://doi.org/10.1016/S0065-2113(02)77017-X
  19. Hull, H. M. (1952) Carbohydrate translocation in tomato and sugar beet with particular reference to temperature effect, Am. J. of Botany. 39, 661-669 https://doi.org/10.2307/2438373
  20. Wand, S. J. E., Midgley, G. F., Jones, M. H. and Curtis, P. S. (1999) Responses of wild $C_4$ and $C_3$ grasses (Poaceae) species to elevated atmospheric $CO_2$ concentration: a meta-analytic test of current theories and perceptions, Global Change Biol. 5, 723-741 https://doi.org/10.1046/j.1365-2486.1999.00265.x
  21. Daepp, M., Suter, D., Almedia, J. P. F., Isopp, H., Hartwig, U., Frehner, M., Blum, H., Nosberger, J. and Luscher, A. (2000) Yield responses of Lolium perenne swards to free-air $CO_2$ enrichment increased over six years in a high N input system on fertile soil, Global Change Biol. 6, 805-816 https://doi.org/10.1046/j.1365-2486.2000.00359.x
  22. Hebeisen, T., Luscher, A., Zanetti, S., Fisher, B. U., Hartwig, U., Frehner, M., Hendry, G. R., Blum, H. and Nosberger, J. (1997) Growth responses of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free-air $CO_2$ enrichment and management, Global Change Biol. 3, 149-160 https://doi.org/10.1046/j.1365-2486.1997.00073.x
  23. Jongen, M., Jones, M. B., Hebeisen, T., Blum, H. and Hendrey, G. (1995) The effect of elevated $CO_2$ concentrations on the root growth of Lolium perenne and Trifolium repens grown in a FACE system, Global Change Biol. 1, 361-371 https://doi.org/10.1111/j.1365-2486.1995.tb00034.x
  24. Fock, H., Canvin, D. T. and Grant, B. R. (1971) Effects of oxygen and carbon dioxide on photosynthetic $O_2$ evolution and $CO_2$ uptake in sunflower and Chlorella, Photosythetica. 5, 389-394
  25. Hellmuth, E. O. (1971) The effect of varying air-$CO_2$ level, leaf temperature, and illuminance on the $CO_2$ exchange of the dwarf pea, Pisium sativa L. var. Meteor, Photosythetica. 5, 190-194
  26. Holly, W. D. (1970) $CO_2$ enrichment for flower production, Trans. Am. Soc. Agr. Eng. 13, 257-258 https://doi.org/10.13031/2013.38583
  27. Kretchman, D. W. and Howlett, F. S. (1970) $CO_2$ enrichment for vegetable production, Trans. Am. Soc. Agr. Eng. 13, 252-256 https://doi.org/10.13031/2013.38582
  28. Adams, S. R., Cokshull, K. E. and Cave, C. R. J. (2001) Effect of temperature on the growth and development of tomato fruits, Annals of Bot. 88, 869-877 https://doi.org/10.1006/anbo.2001.1524
  29. Knecht, G. N. and O'Leary, J. W. (1974) Increased tomato fruit development by $CO_2$ enrichment, J. Am. Soc. Hort. Sci. 99, 214-216
  30. Lohar, D. P. and Peat, W. E. (1998) Floral characteristics of heat-tolerance and heat-sensitive tomato cultivars at high temperature, Scientia Horticulturae. 73, 53-60 https://doi.org/10.1016/S0304-4238(97)00056-3
  31. Iwahori, S. (1966) High temperature injuries in tomato V. Fertilization and development of embryo with special reference to the abnormalities caused by high temperature, J. Jpn. Soc. Hort. Sci. 33, 379-388
  32. Stevens, M. A. and Rudich, J. (1978) Genetic potential for overcoming physiological limitations on adaptability, yield, and quality in the tomato, HortSci. 673-678
  33. Kinet, J. M. and Peet, M. M. (1997) Tomato, pp. 207-258. In: Wien, H. C. (Ed.), The Physiology of Vegetable Crops. Commonwealth Agricultural Breau (CAB) International, Wallinford, UK
  34. Havaux, M., Greppin, H. and Strasser, R. (1991) Functioning of photosystem I and II in pea leaves exposed heat stress in the presence or absence of light, Analysis using in vivo fluorescence, absorbance, oxygen and photoacoustic measurements, Planta. 186, 88-98
  35. Aung, L. H. (1976) Effects of photoperiod and temperature on vegetative and reproductive responses of Lycoperisicon esculentum Mill., J. Am. Soc. Hort. Sci. 101, 358-360

Cited by

  1. Review of Long-term Climate Change Research Facilities for Forests vol.18, pp.4, 2016, https://doi.org/10.5532/KJAFM.2016.18.4.274
  2. Effect of Elevated CO2Concentration and Temperature on the Growth and Ecophysiological Responses of Ginseng (Panax ginseng C. A. Meyer) vol.57, pp.2, 2012, https://doi.org/10.7740/kjcs.2012.57.2.106
  3. Effects of the Elevated Temperature and Carbon Dioxide on Vine Growth and Fruit Quality of 'Campbell Early' Grapevines (Vitis labruscana) vol.32, pp.6, 2014, https://doi.org/10.7235/hort.2014.13059
  4. Changes of Fruit Cracking Percentage and Fruit Shape of 'Hei' Black Tomato with Increased Temperature vol.17, pp.3, 2015, https://doi.org/10.5532/KJAFM.2015.17.3.202