Abstract
When the stagnation temperature of the combustion chamber or ambient air increases, the specific heats and their ratio do not remain constant any more, and start to vary with this temperature. The gas remains perfect, except, it will be calorically imperfect and thermally perfect. A new generalized form of the Prandtl Meyer function is developed, by adding the effect of variation of this temperature, lower than the threshold of dissociation. The new relation is presented in the form of integral of a complex analytical function, having an infinite derivative at the critical temperature. A robust numerical integration quadrature is presented in this context. The classical form of the Prandtl Meyer function of a perfect gas becomes a particular case of the developed form. The comparison is made with the perfect gas model for aim to present a limit of its application. The application is for air.