DOI QR코드

DOI QR Code

The Influence of Nutrients Concentration and the Ratio on Phytoplankton Community Structure during Late Spring and Early Summer in Sagami Bay, Japan

춘계와 하계의 영양염 농도와 그 구성비가 식물플랑크톤의 군집구조에 미치는 영향평가

  • Baek, Seung-Ho (Graduate School of Environmental and Information Sciences, Yokohama National University, 79-2 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan) ;
  • Shimode, Shinji (Ocean Research Institute, University of Tokyo) ;
  • Han, Myung-Soo (Department of Life Science, Hanyang University) ;
  • Kikuchi, Tomohiko (Graduate School of Environmental and Information Sciences, Yokohama National University)
  • Published : 2008.12.31

Abstract

The relationship between nutrients and phytoplankton dynamics was investigated daily from 12 April to 22 July 2003 in Sagami Bay, Japan. According to multidimensional scaling (MDS) and cluster analysis, phytoplankton community was divided into four distinct groups. The first group was consisted of centric diatom species, such as Guinardia spp., Detonula spp., Letocylindrus danicus, Skeletonema costatum, Eucampia zodiacus and Chaetoceros spp.. The second and third clusters comprised mainly diatoms and dinoflagellates, respectively. The other cluster was restricted to the samples collected during the last sampling period when the rainfall and river discharge was frequently recorded. Canonical correspondence analysis (CCA) was applied to analyze four groups respectively, which focused on the effects of nutrients concentration and ratio on phytoplankton variations. Based on CCA analysis, most species of centric diatom were negatively correlated with DSi concentrations and Si/N ratio. Nutrients were strongly limited phytoplankton growth during the summer when the rainfall was not observed, whereas river discharge by rainfall and counterclockwise coastal currents (although the surface circulation pattern is often altered by Kuroshio Current, the counterclockwise coastal currents are generally dominant) has brought phytoplankton population accumulation and triggered the micoalgae growth in western part of the bay. Phosphorous (P) was strongly limited after significantly increases in the phytoplankton abundances. However, silicate (Si) was not a major limiting factor for phytoplankton production, since Si/DIN and Si/P ratio did not create any potential stoichiometric limitation. This indicates that high Si availability contributes favorably to the maintenance of diatom ecosystems in Sagami Bay.

Keywords

References

  1. Baek S.H., Shimode S. and Kikuchi T. 2007. Reproductive ecology of the dominant dinoflagellate, Ceratium fusus in coastal area of Sagami Bay, Japan. J. Oceanogr. 63:35-45 https://doi.org/10.1007/s10872-007-0004-y
  2. Baek S.H., Shimode S., Han M.S. and Kikuchi T. 2008a. Population development of the dinoflagellates Ceratium furca and Ceratium fusus in Iwa Harbor, Sagami Bay, Japan. Ocean Science Journal 43:49-59 https://doi.org/10.1007/BF03022431
  3. Baek S.H., Shimode S., Han M.S. and Kikuchi T. 2008b.Growth of dinoflagellate, Ceratium furca and Ceratium fusus in Sagami Bay, Japan:The role of nutrients. Harmful Alage 7:729-739 https://doi.org/10.1016/j.hal.2008.02.007
  4. Baek S.H., Shimode S., Kim H.C., Han M.S. and Kikuchi T. 2009. Strong bottom-up effects on phytoplankton community caused by a rainfall during spring and summer in Sagami Bay, Japan. J. Mar, Syst. (in press)
  5. Bizsel N. and Uslu O. 2000. Phosphate, nitrogen and iron enrichment in the polluted Izmir Bay, Aegean Sea. Mar. Environ. Res. 49:101-122 https://doi.org/10.1016/S0141-1136(99)00051-3
  6. Brzezinski M.A. 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol. 21:347-357 https://doi.org/10.1111/j.0022-3646.1985.00347.x
  7. Clarke K.R. and Warwick R.M. 2001. Change in Marine Communities:An approach to statistical analysis and interpretation (2nd edition). PRIMER-E, Plymouth, 179 pp
  8. Culver M.E. and Smith W.O. 1989. The effects of environmental variation on the sinking rates of marine phytoplankton. J. Phycol. 25:262-270 https://doi.org/10.1111/j.1529-8817.1989.tb00122.x
  9. Donaghay P.L. and Osborn T.R. 1997. Toward a theory of biological-physical control of harmful algal bloom dynamics and impacts. Limnol. Oceanogr. 42:1283-1296 https://doi.org/10.4319/lo.1997.42.5_part_2.1283
  10. Dortch Q. and Whitledge T. E. 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont. Shelf Res. 12:1293-1309 https://doi.org/10.1016/0278-4343(92)90065-R
  11. ECOHAB. 1995. The Ecology and Oceanography of Harmful Algal Blooms:A national research agenda. Woods Hole Oceanographic Insitute, Woods Hole, 66 pp
  12. Enomoto Y. 1956. On the occurrence and food of Noctiluca scintillans in the waters adjacent to the west coast of Kyushu, with special reference to the possibility of the damage caused to the fish eggs by that plankton. Bull. Jpn. Soc.Sci. Fish. 22:82-88 https://doi.org/10.2331/suisan.22.82
  13. Fisher T.R, Peele E.R., Ammerman J.W. and Harding L.W. Jr. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser. 82:51-63 https://doi.org/10.3354/meps082051
  14. Fujiki T., Toda T., Kikuchi T., Aono H. and Taguchi S. 2004. Phosphorus limitation of primary productivity during the spring-summer blooms in Sagami Bay, Japan. Mar. Ecol. Prog. Ser. 283:29-38 https://doi.org/10.3354/meps283029
  15. Hattori A. 1977. Detailed distribution and cycling of nitrogen in Sagami and Suruga Bays. In:Hogetsu K., Hatanaka M., Hanaoka T. and Kawamura T. (eds), Productivity of biocenoses in coastal regions of Japan, JIBP synthesis 14. University of Tokyo press, Tokyo. pp. 42-48
  16. Hogetsu K. and Taga N. 1977. Suruga Bay and Sagami Bay. In: Hogetsu K. Hatanaka M. Hanaoka T. and Kawamura T. (eds), Hydrographic condition. JIBP Synthesis14. University of Tokyo Press, Tokyo. pp. 31-172
  17. Holm-Hansen O., Lorenzen C.J., Holmes R.N. and Strickland J.D.H. 1965. Fluorometric determination of chlorophyll. Journal du Conseil Permanent International Pour l'Exploration de la Mer 30:3-15 https://doi.org/10.1093/icesjms/30.1.3
  18. Itakura S., Imai I. and Itoh K. 1990. Seasonal occurrence of the noxious red tide dinoflagellate Gymnodinium nagasakiense in Hiroshima Bay, Seto Inland Sea. Bull Nansei Natl. Fish. Res. Inst. 23:27-33. (In Japanese, with English abstract)
  19. Iwata S. 1985. Sagami Bay:physics. In:Oceanographical Society of Japan (eds), Coastal Oceanography of Japanese Inlands. Tokai University Press, Tokyo. pp 401-409
  20. Iwata S. and Matsuyama M. 1989. Surface circulation in Sagami Bay:the response to variation of the Kuroshiwo Axis. J. Oceanogr. Soc. Japan 45:310-320 https://doi.org/10.1007/BF02123485
  21. Jeong H.J. 1999. The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J. Eukaryot. Microbiol. 46:390-396 https://doi.org/10.1111/j.1550-7408.1999.tb04618.x
  22. Jeong H.J., Yoo Y.D., Park J.Y., Song J.Y., Kim S.T., Lee S.H., Kim K.Y. and Yih W.H. 2005. Feeding by phototrophic redtide dinoflagellates:five species newly revealed and six species previously known to be mixotrophic. Aquat. Microb. Ecol. 40:133-150 https://doi.org/10.3354/ame040133
  23. Johnson T.J. and Smith Jr. W.O. 1986. Sinking rates of phytoplankton assemblages in the Weddell Sea marginal ice zone. Mar. Ecol. Prog. Ser. 33:131-137 https://doi.org/10.3354/meps033131
  24. Joint I.R., Owens N.J.P. and Pomroy A.J. 1986. Seasonal production of phytosynthetic picoplankton and nanoplankton in the Celtic Sea. Mar. Ecol. Prog. Ser. 28:251-258 https://doi.org/10.3354/meps028251
  25. Justic D., Rabalais N.N., Turner R.E. and Dortch Q. 1995. Changes in nutrient structure of river-dominated coastal waters:stoichiometric nutrient balance and its consequences. Estuar. Coast. Shelf Sci. 40:339-356 https://doi.org/10.1016/S0272-7714(05)80014-9
  26. Kamatani A., Oku O., Tsuji H., Maeda M. and Yamada Y. 2000. The distribution and fate of nutrients in Sagami Bay. Nippon Suisan Gakkaishi 66:70-79 (In Japanese) https://doi.org/10.2331/suisan.66.70
  27. Kanda J., Fujiwara S., Kitazato H. and Okada Y. 2003. Seasonal and annual variation in the primary production regime in the central part of Sagami Bay. Progress in Oceanogr. 57:17-29 https://doi.org/10.1016/S0079-6611(03)00048-X
  28. Miyaguchi H., Fujiki T., Kikuchi T., KuwaharaV. S. and Toda T. 2006. Relationship between the bloom of Noctiluca scintillans and environmental factors in the coastal waters of Sagami Bay, Japan. J. Plankton Res. 28:313-324 https://doi.org/10.1093/plankt/fbi127
  29. Montani S., Pithakpol S. and Tada K. 1998. Nutrient regeneration in coastal sea by Noctiluca scintillans, a red tide causing dinoflagellate. J. Mar. Biotechnol. 6:224-228
  30. Nakamura Y. 1998. Biomass, feeding and production of Noctiluca scintillans in the Seto Inland Sea, Japan. J. Plankton Res. 20:2213-2222 https://doi.org/10.1093/plankt/20.11.2213
  31. Nishitani G., Yamaguchi M., Ishikawa A., Yanagiya S., Mitsuya T. and Imai I. 2005. Relationships between occurrences of toxic Dinophysis species (Dinophyceae) and small phytoplankton in Japanese coastal waters. Harmful Algae 4:755-762 https://doi.org/10.1016/j.hal.2004.11.003
  32. Okaichi T. and Nishio S. 1976. Identification of ammonia as the toxic principle of red tide of Noctiluca scintillans. Bull. Plankton Soc. Japan 23:75-80
  33. Parsons T.R., Maita Y. and Lalli C.M. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 173 pp.
  34. Rasmussen J. and Richardson K. 1989. Response of Gonyaulax tamarensis to the presence of a pycnocline in an articial water column. J. Plankton Res. 11:747-762 https://doi.org/10.1093/plankt/11.4.747
  35. Redfield A.C., Ketchum B.H. and Richards F.A. 1963. The influence of organisms on the composition of seawater. In: Hill M.N. (ed.), The Sea. John Wiley, New York. pp. 26-77
  36. Ryther J.H. and Dunstan W.M. 1971. Nitrogen, phosphorus and, eutrophication in the coastal marine environment. Science 171:1008-1013 https://doi.org/10.1126/science.171.3975.1008
  37. Satoh F., Hamasaki K., Toda T. and Taguchi T. 2000. Summer phytoplankton bloom in Manazuru Harbor, Sagami Bay, central Japan. Plankton Biol. Ecol. 47:73-79
  38. Sekiguchi H. and Kato T. 1976. Influence of Noctiluca's predation on the Acartia population in Ise Bay, Central Japan. J. Oceanogr. Soc. Japan 32:195-198 https://doi.org/10.1007/BF02107121
  39. Smayda T. J. 1997. Harmful algal blooms:Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42:1137-1153 https://doi.org/10.4319/lo.1997.42.5_part_2.1137
  40. Smayda T.J. 2002. Turbulence, watermass stratification and harmful algal bloom:an alternative view and frontal zones as "pelagic and banks." Harmful Algae 1:95-112 https://doi.org/10.1016/S1568-9883(02)00010-0
  41. Sondergaard M., Jensen L.M. and Ertebjerg G. 1991. Picoalgae in Danish coastal waters during summer stratification. Mar. Ecol. Prog. Ser. 79:139-149 https://doi.org/10.3354/meps079139
  42. Suzuki R. and Ishimaru T. 1990. An improved method for the determination of phytoplankton chlorophy using N,Ndimethylformamide. J. Oceanogr. Soc. Japan 46:190-194 https://doi.org/10.1007/BF02125580
  43. Tada K., Pithakpol S., Yano R. and Montani S. 2000. Carbon and nitrogen content of Noctiluca scintillans in the Seto Inland Sea, Japan. J. Plankton Res. 22:1203-1211 https://doi.org/10.1093/plankt/22.6.1203
  44. Turner R.E., Qureschi N., Rabalais N.N., Dortch Q., Justic, D., Shaw R.F. and Cope J. 1998. Fluctuating silicate:nitrate ratios and coastal food webs. Proceeding of the National Academy of Sciences (USA) 95:13048-13051
  45. Wu J.T. and Chou T.L. 2003. Silicate as the limiting nutrient for phytoplankton in a subtropical eutrophic estuary of Taiwan. Estuar. Coast. Shelf Sci. 58:155-162 https://doi.org/10.1016/S0272-7714(03)00070-2

Cited by

  1. Characteristics of Horizontal Community Distribution and Nutrient Limitation on Growth Rate of Phytoplankton during a Winter in Gwangyang Bay, Korea vol.33, pp.2, 2011, https://doi.org/10.4217/OPR.2011.33.2.099
  2. The Influence of Nutrients Addition on Phytoplankton Communities Between Spring and Summer Season in Gwangyang Bay, Korea vol.19, pp.1, 2014, https://doi.org/10.7850/jkso.2014.19.1.53