DOI QR코드

DOI QR Code

Structural properties and optical studies of two-dimensional electron gas in Al0.55Ga0.45/GaN heterostructures with low-temperature AlN interlayer

저온 성장 AlN 층이 삽입된 Al0.55Ga0.45N/AlN/GaN 이종접합 구조의 구조적 특성 및 이차원 전자가스의 광학적 특성

  • Kwack, H.S. (Department of Physics, Chungbuk National University) ;
  • Lee, K.S. (Department of Physics, Chungbuk National University) ;
  • Kim, H.J. (School of Materials Scienceand Engineering, Seoul National University) ;
  • Yoon, E. (School of Materials Scienceand Engineering, Seoul National University) ;
  • Cho, Y.H. (Department of Physics, Chungbuk National University)
  • Published : 2008.01.30

Abstract

We have investigated the characteristics of $Al_{0.55}Ga_{0.45}N$/GaN heterostructures with and without low-temperature (LT) AlN interlayer grown by metalorganic chemical vapor deposition. The structural and optical properties were systematically studied by Rutherford backscattering spectroscopy (RBS), X-ray diffraction (XRD), optical microscopy (OMS), scanning electron microscopy (SEM), and photoluminescence (PL). The Al content (x) of 55% and the structural properties of $Al_xGa_{1-x}N$/GaN heterostructures were investigated by using RBS and XRD, respectively. We carried out OMS and SEM experiments and obtained a decrease of the crack network in $Al_{0.55}Ga_{0.45}N$ layer with LT-AlN interlayer. A two-dimensional electron gas (2DEG)-related PL peak located at ${\sim}3.437eV$ was observed at 10 K for $Al_{0.55}Ga_{0.45}N$/GaN with LT-AlN interlayer. The 2DEG-related emission intensity gradually decreased with increasing temperature and disappeared at temperatures around 100 K. In addition, with increasing the excitation power above 3.0 mW, two 2DEG-related PL peaks were observed at ${\sim}3.411$ and ${\sim}3.437eV$. The observed lower-energy and higher-energy side 2DEG peaks were attributed to the transitions from the sub-band level and the Fermi energy level of 2DEG at the AlGaN/LT-AlN/GaN heterointerface, respectively.

저온에서 성장된 AlN (LT-AlN)층이 삽입된 $Al_xGa_{1-x}N/LT$-AlN/GaN 이종접합 구조를 금속유기 화학기상 증착법 (metal-organic chemical vapor deposition)을 사용하여 사파이어 기판 위에 제작하였다. Rutherford backscattering spectroscopy 실험을 통하여 $Al_xGa_{1-x}N$층의 Al의 조성비 x가 55% 임을 확인하였고, X-선 역격자 공간 mapping을 통하여 층간 변형력을 조사하였다. LT-AlN층의 삽입 여하에 따른 $Al_{0.55}Ga_{0.45}N$ 층의 깨짐 현상을 광학현미경과 주사전자현미경을 통하여 조사하였는데, LT-AlN 층이 삽입된 시료의 경우에 깨짐 현상이 현저히 줄어든 $Al_{0.55}Ga_{0.45}N$ 층을 얻을 수 있었다. 뿐만 아니라 LT-AlN 층이 삽입된 $Al_{0.55}Ga_{0.45}N$/LT-AlN/GaN 이종접합 구조에 대하여 이차원 전자가스 (two-dimensional electron gas, 2DEG) 관련된 photoluminescence (PL) 신호를 관찰하였다. 이 시료에 대하여 온도 변화에 따른 PL 실험을 수행하여 100 K 근방까지 2DEG 관련된 PL 신호를 관찰하였다. 여기광 세기에 따른 PL 실험을 통하여 ~3.411 eV에서 나타난 2DEG PL 신호와 함께 ${\sim}3.437eV$에서도 PL 신호가 관측되었는데, 이는 AlGaN/LT-AlN/GaN 계면에 형성된 2DEG 버금띠와 Fermi 에너지 준위에서의 재결합 특성으로 각각 해석되었다.

Keywords

References

  1. S. Nakamura, G. Fasol, The Blue Laser Diode, Springer, Berlin 1997, p.277
  2. J. Han, M. H. Crakford, R. J. Shul, J. J. Figiel, M. Banas, L. Zhang, Y. K. Song, H. Zhou, A. V. Nuramikko, Appl. Phys. Lett. 73, 1688 (1998) https://doi.org/10.1063/1.122246
  3. M. Miyoshi, H. Ishikawa, T. Egawa, K. Asai, M. Mouri, T. Shibata, M. TAnaka, and O. Oda, Appl. Phys. Lett. 85, 1710 (2004) https://doi.org/10.1063/1.1790073
  4. T. G. Zhu, U. Chowdhury, J. C. Denyszyn, M. M. Wong, and R. D. Dupuis, J. Cryst. Growth 248, 548 (2003) https://doi.org/10.1016/S0022-0248(02)01930-9
  5. V. Kuryatkov, A, Chandolu, B. Borisov, G. Kipshidze, K. Shu, S. Nikishin, and H. Temkin, Appl. Phys. Lett. 82, 1323 (2003) https://doi.org/10.1063/1.1557325
  6. P. Sandvik, K. Mi, F. Shahedipour, R. McClintock, A. Yasan, P. Kung, M. Razeghi, J. Cryst. Growth 231, 366 (2001) https://doi.org/10.1016/S0022-0248(01)01467-1
  7. C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A.L. Beck, R. D. Dupuis, and J. C. Campbell, Appl. Phys. Lett. 80, 3754 (2002) https://doi.org/10.1063/1.1480484
  8. E. Monroy, F. Calle, J.L. Pau, E.Munoz, F. Omnes, B. Beaumont, and P. Gibart, Phys. Stat. Sol. 185, 91 (2001) https://doi.org/10.1002/1521-396X(200105)185:1<91::AID-PSSA91>3.0.CO;2-F
  9. E. Monroy, F. Calle, J.L. Pau, E. Munoz, F. Omnes, B. Beaumont, P. Gibart, J. Cryst. Growth 230, 537 (2001) https://doi.org/10.1016/S0022-0248(01)01305-7
  10. I. H. Lee, T. G. Kim, Y. Park, J. Crystal Growth 234, 305 (2002) https://doi.org/10.1016/S0022-0248(01)01702-X
  11. R. Q. Jin, J. P. Liu, J. C. Zhang, and H. Yang, J. Crystal Growth 268, 35 (2002)
  12. Y. C. Kong, Y. D. Zheng, C. H. Zhou, S. L. Gu, R. Zhang, P. Han, Y. Shi, and R. L. Jiang, Appl. Phys. A 84, 95 (2006) https://doi.org/10.1007/s00339-006-3600-6
  13. C. McAleese, M. J. Kappers, F. D. G. Rayment, P. Cherns, C. J. Humphreys, J. Cryst. Growth 272, 475 (2004) https://doi.org/10.1016/j.jcrysgro.2004.08.116
  14. J. P. Zhang, H. M. Wang, M. E. Gaevski, C. Q. Chen, Q. Fareed, J. W. Yang, G. Simin, and M. Asif Khana, Appl. Phys. Lett. 80, 3542 (2002) https://doi.org/10.1063/1.1477620
  15. H.-S. Kwack, Y. H. Cho, G. H. Kim, M. R. Park, D. H. Youn, S. B. Bae, K. S. Lee, J. H. Lee, J. H. Lee, T. W. Kim, T. W. Kang, and K. L Wang, Appl. Phys. Lett. 87, 041909 (2005) https://doi.org/10.1063/1.2000334
  16. I. P. Smorchkova, L. Chen, T. Nates, L. Shen, S. Heikman, B. Moran, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, J. Appl. Phys. 90, 5196 (2001) https://doi.org/10.1063/1.1412273
  17. H. S. Kwack, Y. H. Cho, G. H. Kim, M. R. Park, D. H. Youn, S. B. Bae, K.-S. Lee, J. H. Lee, and J. H. Lee, Phys. Stat. Sol. (c) 3, 2109 (2006) https://doi.org/10.1002/pssc.200565288
  18. L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, and U. K. Mishra, IEEE Electron Device Lett. 22, 457 (2001) https://doi.org/10.1109/55.954910
  19. L. Hsu and W. Walukiewicz, J. Appl. Phys. 85, 3222 (1999) https://doi.org/10.1063/1.369664
  20. H.-S. Kwack, S. B. Bae, K. S. Lee, J. H. Lee, J. H. Lee, and Y. H. Cho, Saemulli 53, 412 (2006)