DOI QR코드

DOI QR Code

Chromosome 22 LD Map Comparison between Korean and Other Populations

  • Lee, Jong-Eun (Genotyping Centers: DNA Link, Inc.) ;
  • Jang, Hye-Yoon (Genotyping Centers: DNA Link, Inc.) ;
  • Kim, Sook (Genotyping Centers: DNA Link, Inc.) ;
  • Yoo, Yeon-Kyeong (Genotyping Centers: DNA Link, Inc.) ;
  • Hwang, Jung-Joo (Samsung Advanced Institute of Technology) ;
  • Jun, Hyo-Jung (Samsung Advanced Institute of Technology) ;
  • Lee, Kyu-Sang (Samsung Advanced Institute of Technology) ;
  • Son, Ok-Kyung (Samsung Advanced Institute of Technology) ;
  • Yang, Jun-Mo (Sungkyunkwan University School of Medicine) ;
  • Ahn, Kwang-Sung (Sungkyunkwan University School of Medicine) ;
  • Kim, Eug-Ene (Sungkyunkwan University School of Medicine) ;
  • Lee, Hye-Won (Sungkyunkwan University School of Medicine) ;
  • Song, Kyu-Young (University of Ulsan College of Medicine) ;
  • Kim, Hie-Lim (Sungkyunkwan University School of Medicine) ;
  • Lee, Seong-Gene (Sungkyunkwan University School of Medicine) ;
  • Yoon, Yong-Sook (Sungkyunkwan University School of Medicine) ;
  • Kimm, Ku-Chan (Community Engagement/Public Consultation and Sample Collection Group: the Genomic Research Center, Korean National Institute of Health) ;
  • Han, Bok-Ghee (Community Engagement/Public Consultation and Sample Collection Group: the Genomic Research Center, Korean National Institute of Health) ;
  • Oh, Berm-Seok (Community Engagement/Public Consultation and Sample Collection Group: the Genomic Research Center, Korean National Institute of Health) ;
  • Kim, Chang-Bae (Analysis Group: Medical Genomic Research Center) ;
  • Jin, Hoon (Analysis Group: Medical Genomic Research Center) ;
  • Choi, Kyoung-O. (Analysis Group: Medical Genomic Research Center) ;
  • Kang, Hyo-Jin (Analysis Group: Medical Genomic Research Center) ;
  • Kim, Young-J. (Analysis Group: Medical Genomic Research Center)
  • Published : 2008.03.31

Abstract

Single nucleotide polymorphisms (SNPs) are the most abundant forms of human genetic variations and resources for mapping complex genetic traits and disease association studies. We have constructed a linkage disequilibrium (LD) map of chromosome 22 in Korean samples and compared it with those of other populations, including Yorubans in Ibadan, Nigeria (YRI), Centre d'Etude du Polymorphisme Humain (CEPH) reference families (CEU), Japanese in Tokyo (JPT) and Han Chinese in Beijing (CHB) in the HapMap database. We genotyped 4681 of 111,448 publicly available SNPs in 90 unrelated Koreans. Among genotyped SNPs, 4167 were polymorphic. Three hundred and five LD blocks were constructed to make up 18.6% (6.4 of 34.5 Mb) of chromosome 22 with 757 tagSNPs and 815 haplotypes (frequency $\geq$ 5.0%). Of 3430 common SNPs genotyped in all five populations, 514 were monomorphic in Koreans. The CHB + JPT samples have more than a 72% overlap with the monomorphic SNPs in Koreans, while the CEU + YRI samples have less than a 38% overlap. The patterns of hot spots and LD blocks were dispersed throughout chromosome 22, with some common blocks among populations, highly concordant between the three Asian samples. Analysis of the distribution of chimpanzee-derived allele frequency (DAF), a measure of genetic differentiation, Fst levels, and allele frequency difference (AFD) among Koreans and the HapMap samples showed a strong correlation between the Asians, while the CEU and YRI samples showed a very weak correlation with Korean samples. Relative distance as a quantitative measurement based upon DAF, Fst, and AFD indicated that all three Asian samples are very proximate, while CEU and YRI are significantly remote from the Asian samples. Comparative genome-wide LD studies provide useful information on the association studies of complex diseases.

Keywords

References

  1. Abecasis, G.R., Noguchi, E., Heinzmann, A., Traherne, J.A., Bhattacharyya, S., et al. (2001). Extent and distribution of linkage disequilibrium in three genome regions, Am. J. Hum. Genet. 68, 191-197. https://doi.org/10.1086/316944
  2. Bansal, A., Van den Boom, D., Kammerer, S., Honisch, C., Adam, G., et al. (2005). Association testing by DNA pooling: an effective initial screen, Proc. Natl. Acad. Sci. USA 99, 16871-16874.
  3. Barrett, J.C., Fry, B., Maller, J., and Daly, M.J. (2004). HaploView: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263-265. https://doi.org/10.1093/bioinformatics/bth457
  4. Cardon, L.R., and Abecasis, G.R. (2003). Using haplotype blocks to map human complex trait loci. Trends in Genetics 19, 135-140. https://doi.org/10.1016/S0168-9525(03)00022-2
  5. Chakravarti, A. (2001). To a future genetic medicine. Nature 409, 822-823. https://doi.org/10.1038/35057281
  6. Choi, J.H., Jung, H.Y., Kim, H.S., and Cho, H.G. (2000). PhyloDraw: a phylogenetic tree drawing system. Bioinformatics 16, 1056-1058. https://doi.org/10.1093/bioinformatics/16.11.1056
  7. Crawford, D.C., Bhangale, T., Hellenthal, N. Li, G., Rieder, D., et al. (2004). Evidence for substantial fine-scale variation in recombination rates across the human genome. Nat. Genet. 36, 700-706. https://doi.org/10.1038/ng1376
  8. Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J., and Lander, E.S. (2001). High resolution haplotype structure in the human genome. Nat. Genet. 29, 229-232. https://doi.org/10.1038/ng1001-229
  9. Dawson, E., Abecasis, G.R., Bumpstead, S., Chen, Y., Hunt, S., et al. (2002). A first generation linkage disequilibrium map of human chromosome 22. Nature 418, 544-548. https://doi.org/10.1038/nature00864
  10. De La Vega, F.M., Isaac, H., Collins, A., Scafe, C.R., Halldorsson, B.V., et al. (2005). The linkage disequilibrium maps of three human chromosomes across four populations reflect their demographic history and a common underlying recombination pattern. Genome Res. 15, 454-462. https://doi.org/10.1101/gr.3241705
  11. Excoffier, L. and Slatkin, M. (1995). Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. Evol. 12, 921- 927.
  12. Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., et al. (2002). The structure of haplotype blocks in the human genome. Science 296, 2225-2229. https://doi.org/10.1126/science.1069424
  13. Genomme, G.A., and Van Oene, M. (2005). High-throughput multiplex single-nucleotide polymorphism analysis for red cell and platelet antigen genotypes. Transfusion 45, 660-666. https://doi.org/10.1111/j.1537-2995.2005.04365.x
  14. Hill, W.G., and Robertson, A. (1968). Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38, 226-231. https://doi.org/10.1007/BF01245622
  15. Jeffreys, A.J., Kauppi, L., and Neumann, R. (2001). Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat. Genet. 29, 217-222. https://doi.org/10.1038/ng1001-217
  16. Kim, Y.J., Choi, K.O., Kang, H.J., Kim, C.B., Yu, U.S., et al. (2003). Parametric optimization in the selection of SNP loci for hapMap project. The 2nd Annual Conference of the Korean Society for Bioinformatics, Daejeon, Korea.
  17. Kruglyak, L. (1999). Prospect for whole genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22, 151-157. https://doi.org/10.1038/9658
  18. Lai, E., Bowman, C., Bansal, A., Hughes, A., Mosteller, M., and Roses, A.D. (2002). Medical applications of haplotype-based SNP maps: learning to walk before we run. Nat. Genet. 32, 353-354. https://doi.org/10.1038/ng1102-353
  19. Lewontin, R.C. (1998). On measures of gametic disequilibrium. Genetics, 120, 849-852.
  20. Li, N., and Stephens, M. (2003). Modeling linkage disequilibrium and identifying recombination hotspots using SNP data. Genet. 165, 2213-2233.
  21. McVean, G.A.T., Myers, S., Hunt, S., Deloukas, P., Bentley, D., et al. (2004). The fine-scale structure of recombination rate variation in the human genome. Science 304, 581-584. https://doi.org/10.1126/science.1092500
  22. Mueller, J.C., Lohmussaar, E., Magi, R., Remm, M., Bettecken, T., et al. (2005). Linkage disequilibrium patterns and tagSNP transferability among European populations. Am. J. Hum. Genet. 76, 387-398. https://doi.org/10.1086/427925
  23. Myers, S., Bottolo, L., Freeman, C., McVean, G., and Donnelly, P. (2005). A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321-324. https://doi.org/10.1126/science.1117196
  24. Park, L.Y. (2007). Controlling Linkage Disequilibrium in Association Tests: Revisiting APOE Association in Alzheimer's Disease. Genomics & Informatics 5(2), 61-67.
  25. Patil, N., Berno, A.J., Hinds, D.A., Barrett, W.A., Doshi, J.M., et al. (2001). Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719-1723. https://doi.org/10.1126/science.1065573
  26. Reich, D.E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P.C., et al. (2001). Linkage disequilibrium in the human genome. Nature 411, 199-204. https://doi.org/10.1038/35075590
  27. Risch, N., and Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science 273, 1516-1517. https://doi.org/10.1126/science.273.5281.1516
  28. Rozen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365-386.
  29. Shifman, S., Kuypers, J., Kokoris, M., Yakir, B., and Darvasi, A. (2003). Linkage disequilibrium patterns of the human genome across populations. Hum. Mo. Genet. 12, 771-776. https://doi.org/10.1093/hmg/ddg088
  30. Stenzel, A., Lu, T., Koch, W.A., Hampe, J., Guenther, S.M., et al. (2004). Patterns of linkage disequilibrium in the human MHC region on human chromosome 6p. Hum. Genet. 14, 377-385.
  31. Stephens, M., and Donnelly, P. (2003). A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162-1169. https://doi.org/10.1086/379378
  32. The International HapMap Consortium. (2003). The International HapMap Project. Nature 426, 789-796. https://doi.org/10.1038/nature02168
  33. The International HapMap Consortium. (2004). Integrating ethics and science in the International HapMap Project. Nature Reviews: Genetics 5, 467-475. https://doi.org/10.1038/nrg1351
  34. The International HapMap Consortium. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851-861. https://doi.org/10.1038/nature06258
  35. Thomson, R., Pritchard, J.K., Shen, P., Oefner, P.J., and Feldman, M.W. (2000). Recent common ancestry of human Y chromosomes: evidence from DNA sequence data. Proc. Natl. Acad. Sci. USA 97, 7360-7365. https://doi.org/10.1073/pnas.97.13.7360
  36. Weir, M. (1996). Genetic data analysis II. Sinauer, Sunderland
  37. Wright, S. (1951). The genetical structure of populations. Ann. Eugen. 15, 323-354.
  38. Zavattari, P., Deidda, E., Whalen, M., Lampis, R., Mulargia, A., et al. (2000). Major factors influencing linkage disequilibrium by analysis of different chromosome regions in distinct populations: demography, chromosome recombination frequency and selection. Hum. Mol. Genet. 9, 2947-2957. https://doi.org/10.1093/hmg/9.20.2947
  39. Zhang, W., Collins, A., and Morton, N.E. (2004). Does haplotype diversity predict power for association mapping of disease susceptibility?. Hum. Genet. 115, 157-164.
  40. The UCSC Genome Bioinformatics Site. http://genome.ucsc.edu/
  41. The SNP Consortium (TSC) Ltd. http://snp.cshl.org/
  42. A database of Japanese Single Nucleotide Polymorphisms. http://snp.ims.u-tokyo.ac.jp/
  43. Korean HapMap Project homepage. http://www.khapmap.org/
  44. International HapMap Project homepage. http://www.hapmap.org/
  45. Korean National Institute of Health (KNIH). http://www.mohw.go.kr/index.jsp/
  46. Single Nucleotide Polymorphism database. http://www.ncbi.nlm.nih.gov/SNP/

Cited by

  1. Development of KHapmap Browser using DAS for Korean HapMap Research vol.6, pp.2, 2008, https://doi.org/10.5808/GI.2008.6.2.057
  2. The Korean HapMap Project Website vol.6, pp.2, 2008, https://doi.org/10.5808/GI.2008.6.2.091
  3. An Alternative Way of Constructing Ancestral Graphs Using Marker Allele Ages from Population Linkage Disequilibrium Information vol.7, pp.1, 2009, https://doi.org/10.5808/GI.2009.7.1.001