참고문헌
- SmartSignal Corporation, The Value of Predictive Analysis for Fossil-Fuel Power Plants, Product Brochure (2006)
- J. R. Koelsch, 'In Condition Monitoring, Early is Better,' On-line Publication at http://www.automationworld.com (2006)
- J. R. Koelsch, 'Profit from Condition Monitoring,' Online Publication at http://www.automationworld.com (2006)
- L. G. Paul, 'A New Schedule for Asset Monitoring,' Online Publication at http://managingautomation.com (2007)
- AID Corporation, On-line Early Detection, Product Brochure (2007)
- H. M. Hashemian, 'On-Line Testing of Calibration of Process Instrumentation Channels in Nuclear Power Plants,' NUREG/CR-6343, US Nuclear Regulatory Commission (1995)
- J. W. Hines and R. Seibert, 'Technical Review of On-Line Monitoring Techniques for Performance Assessment,' NUREG/CR-6895, US Nuclear Regulatory Commission (2006)
- J. W. Hines and E. Davis, 'Lessons Learned From the US Nuclear Power Plant On-Line Monitoring Programs,' Prog. Nucl. Ener., 46, 176 (2005) https://doi.org/10.1016/j.pnucene.2005.03.003
- R. Uhrig and J. W. HINES, 'Computational Intelligence in Nuclear Engineering,' Nucl. Eng. Tech., 37. 127 (2005)
- J. Mott, 'Pattern recognition software for plant surveillance,' Performance Software User's Group Meeting, King of Prussia, USA, June 1988
-
SmartSignal Corporation, EPI*
$Center^{TM}$ , Product Brochure (2007) - G. Welch and G. Bishop, 'Technical Course 8: An Introduction to the Kalman Filter,' The Association for Computing Machinery SIGGRAPH 2001, Los Angeles, USA, Aug. 12-17, 2001
- D. Simon, Optimal State Estimation: Kalman, H infinity, and Nonlinear Approaches, John Wiley & Sons, New York, (2006)
- J. Wakabayashi, A. Fukumoto, S. Tashima, and I. Kawahara, 'Application of Adaptive Kalman Filtering Technique for the Diagnostic System of Nuclear Power Plants,' IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, Albuquerque, USA Dec. 10-12, 1980
- A. Racz, 'Detection of Small Leakages by a Combination of Dedicated Kalman Filters and an Extended Version of the Binary Sequential Probability Ratio Test,' Nuc. Tech., 104, 128 (1993) https://doi.org/10.13182/NT93-A34875
- M. V. Kothare, B. Mettler, M. Morari, P. Bendotti, and C. Falinower, 'Level Control in the Steam Generator of a Nuclear Power Plant,' IEEE Trans. Cont. Syst. Tech., 8, 55 (2000) https://doi.org/10.1109/87.817692
- N. R. Draper and H. Smith, Applied Regression Analysis, 3rd, Wiley, New York (1998)
- G. P. McCabe and D.S. Moore, Introduction to the Practice of Statistics, 5th, W.H. Freeman & Company, New York (2005)
- H. Wolfgang, M. Mariene and S. Stefa, Nonparametric and Semiparametric Models, Springer Verlag, Berlin (2004)
- K. Teknomo, 'Kernel Regression,' On-line Publication at http://people.revoledu.com/kardi/tutorial/Regression/Kern elRegression/index.html
- V. Cherkassky and F. Mulier, Learning from Data, Concept, Theory and Methods, 2nd, John Wiley and Sons, Hoboken (2007)
- R. Koenker, Econometic Theory, Lecture Note at University of Illinois (2007)
- P. F. Doruska, Methods for Quantitatively Describing Tree Crown Profiles of Loblolly Pine, Ph.D. Dissertation at Virginia Polytechnic Institute and State University (1998)
- K. C. Gross, R. M. Singer, S. W. Wegerich, J. Mott, and E. Hansen, 'Multivariate State Estimation Technique (MSET) Based Surveillance System,' U.S. Patent 5,764,509 (1998)
- N. Zavaljevski and K. C. Gross, 'Sensor Fault Detection in Nuclear Power Plants Using Multivariate Estimation Technique and Support Vector Machines,' Int. Conf. Yugoslav Nuclear Society, Belgrade, Yugoslavia, Oct. 2-5, 2000
- H. Bozdogan, Statistical Data Mining and Knowledge Discovery, p. 217, Chapman and Hall/CRC Press, Boca Raton, (2004)
- J. W. Hines and A. Usynin, 'MSET Performance Optimization Through Regularization,' Nucl. Eng. Tech., 37, 177 (2005)
- J. M. Zurada, Introduction to Artificial Neural Systems, West Publishing Company, St. Paul (1992)
- S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, Englewood Cliffs (1994)
- B. R. Upadhyaya and E. Eryurek, 'Application of Neural Networks for Sensor Validation and Plant Monitoring,' Nucl. Tech., 97, 170 (1992) https://doi.org/10.13182/NT92-A34613
- S. W. Cheon and S. H. Chang, 'Application of Neural Networks to a Connectionist Expert System for Transient Identification in Nuclear Power Plants,' Nucl. Tech., 102, 177 (1993) https://doi.org/10.13182/NT93-A34815
- Y. Bartal, J. Lin, and R. E. Uhrig, 'Nuclear Power Plant Transient Diagnostics Using Artificial Neural Networks that Allow 'Don't-know' Classifications,' Nucl. Tech., 110, 436 (1995) https://doi.org/10.13182/NT95-A35112
- G. Guglielmi, T. Parisini, and G. Rossi, 'Fault Diagnosis and Neural Networks: a Power Plant Application,' Cont. Eng. Prac., 3, 601 (1995) https://doi.org/10.1016/0967-0661(95)00037-U
- P. F. Fantoni and A. Mazzola, 'A Pattern Recognition: Artificial Neural Network Based Model for Signal Validation in Nuclear Power Plants,' Annals of Nuclear Energy, 23, 1069 (1996) https://doi.org/10.1016/0306-4549(96)84661-5
- P. F. Fantoni and A. Mazzola, 'Multiple-Failure Signal Validation in Nuclear Power Plants using Artificial Neural Networks,' Nucl. Tech., 113, 368 (1996) https://doi.org/10.13182/NT96-A35216
- M. G. Na, S. H. Shin, D. W. Jung, S. P. Kim, J. H. Jeong, and B. C. Lee, 'Estimation of Break Location and Size for Loss of Coolant Accidents Using Neural Networks,' Nucl. Eng. Des, 232, 289 (2004) https://doi.org/10.1016/j.nucengdes.2004.06.007
- M. A. Kramer, 'Nonlinear Principal Component Analysis using Auto Associative Neural Networks,' AIChE Jour., 37, 233 (1991) https://doi.org/10.1002/aic.690370209
- Y. G. Du, D. Hodouin, and J. Thibault, 'Use of a Novel Autoassociative Neural Network for Nonlinear Steady- State Data Reconciliation,' AIChE Jour., 43, 1785 (1997) https://doi.org/10.1002/aic.690430714
- G. Heo, 'Thermal Power Estimation Based on a Neural Network and Principal Component Analysis in Nuclear Power Plants,' Master Thesis at KAIST (1998)
- B. Rasmussen and J. W. Hines, 'Uncertainty Estimation for Empirical Signal Validation Modeling,' International Topical Meeting on Nuclear Plant Instrumentation, Control and Human Machine Interface Technology, Columbus, USA, Sep. 12-22, 2004
- P. F. Fantoni, S. Figedy, and A. Racz, 'PEANO, A Toolbox for Real-time Process Signal Validation and Estimation,' OECD Halden Reactor Project HWR-515, Feb. 1998
- C. Vitanza, 'Overview of the OECD-Halden Reactor Project,' Nucl. Eng. Des., 207, 207, (2001) https://doi.org/10.1016/S0029-5493(00)00384-8
- P. F. Fantoni, 'Experiences and Applications of PEANO for Online Monitoring in Power Plants,' Prog. Nucl. Ener. 46, 206, (2005) https://doi.org/10.1016/j.pnucene.2005.03.005
- A. Wald, Sequential Analysis, Dover Publications, Mineola (1975)
- S. R. Kim, Sequential Probability Ratio Test, Arche Publishing House, Seoul (1999)
- G. Heo, 'Development of a Fouling Monitoring for Safety-Related Heat Exchanger,' Nucl. Eng. Des., Pending Review
- I. Parzit, 'Sequential Tests for Failure Detection,' Ann. Nucl. Ener., 17, 347 (1990) https://doi.org/10.1016/0306-4549(90)90072-L
- K. C. Gross and K. E. Humenik, 'Sequential Probability Ratio Test for Nuclear Plant Component Surveillance,' Nucl. Tech., 93, 131 (1991) https://doi.org/10.13182/NT91-A34499
- M. G. Na, 'A Neuro-Fuzzy Inference System for Sensor Failure Detection Using Wavelet Denosing, PCA and SPRT,' Jour. Korean Nucl. Soc., 33, 483 (2001)
- R. L. Bickford, Surveillance System and Method Having an Adaptive Sequential Probability Fault Detection Test, US 7,082,379, (2006)
- D. S. Bai, Statistical Quality Management, Youngchi, Seoul (1992)
- P. C. Badavas, Real-Time Statistical Process Control, Prentice Hall PTR, Upper Saddle River (1992)
- T. Kourti and J. F. MacGregor, 'Multivariate SPC Methods for Process and Product Monitoring,' Jour. Qual. Tech., 28, 409, (1996) https://doi.org/10.1080/00224065.1996.11979699
- A. Raich and A. Cinar, 'Statistical Process Monitoring and Disturbance Diagnosis in Multivariate Continuous Processes,' AIChE Jour., 42, 995 (1996) https://doi.org/10.1002/aic.690420412
- J. W. Hines and D. Garvey, 'Process and Equipment Monitoring Methodologies Applied to Sensor Calibration Monitoring,' Qual. Reli. Eng. Int., 23, 123, (2007) https://doi.org/10.1002/qre.818
- Heat Exchange Institute (HEI), Standards for Power Plant Heat Exchangers, HEI (1998)
- Electric Power Research Institute (EPRI), Heat Exchanger Performance Monitoring Guideline, NP-7552, EPRI (1991)
- SmartSignal Corporation, Early Warning of Reactor Coolant Pump Seal Degradation, Product Brochure (2003)
- S. H. An, Y. H. Jeong, and S. H. Chang, 'Development of Nuclear Power Plant Online Monitoring System using Statistical Quality Control,' Proc. American Nucl. Soc., Boston, USA, June 24-28, 2007
- W. A. Campbell, Performance Test Codes 6 on Steam Turbine, American Society of Mechanical Engineers (ASME), New York (1996)
- G. Heo, S. J. Lee, S. H. Chang, and S. S. Choi, 'Thermal Performance Test through On-line Turbine Cycle Performance Monitoring in Nuclear Power Plants,' Proc. Korean Nucl. Soc., Seoul, Korea, Oct. 1999
-
G. C. Alder, B. Blakeley, D. R. Fleming, W. C. Kettenacker, and G. L. Minner, Manuals for
$PEPSE{\circledR}$ and$PEPSE{\circledR}$ -GT, ScienTech, Idaho Falls (1999) - D. J. Kukulka, 'An Evaluation of Heat Transfer Surface Materials Used in Fouling Applications,' Heat Tran. Eng., 26, 42 (2005)
- M. Khadem, A. Ipakchi, F. J. Alexandro, and R.W. Colley, 'Application of Neural Networks to Validation of Feedwater Flowrate in a Nuclear Power Plant,' Proc. American Power Conf., Chicago, USA, Apr. 13-15, 1993
- K. Kavaklioglu and B. R. Upadhyaya, 'Monitoring Feedwater Flow Rate and Component Thermal Performance of Pressurized Water Reactors by Means of Artificial Neural Networks,' Nucl. Tech., 107, 112 (1994) https://doi.org/10.13182/NT94-A35003
- G. Heo, S. S. Choi, and S. H. Chang, 'Thermal Power Estimation by Fouling Phenomena Compensation Using Wavelet and Principal Component Analysis,' Nucl. Eng. Des., 199, 31 (2000) https://doi.org/10.1016/S0029-5493(00)00249-1
피인용 문헌
- Monitoring Minimum DNBR Using a Support Vector Regression Model vol.56, pp.1, 2009, https://doi.org/10.1109/TNS.2008.2009216
- Monitoring and Uncertainty Analysis of Feedwater Flow Rate Using Data-Based Modeling Methods vol.56, pp.4, 2009, https://doi.org/10.1109/TNS.2009.2022366
- Smart Soft-Sensing for the Feedwater Flowrate at PWRs Using a GMDH Algorithm vol.57, pp.1, 2010, https://doi.org/10.1109/TNS.2009.2035121
- Prediction of DNBR Using Fuzzy Support Vector Regression and Uncertainty Analysis vol.57, pp.3, 2010, https://doi.org/10.1109/TNS.2010.2047265
- Prediction of Axial DNBR Distribution in a Hot Fuel Rod Using Support Vector Regression Models vol.58, pp.4, 2011, https://doi.org/10.1109/TNS.2011.2159738
- Fault Detection Sensitivity of a Data-driven Empirical Model for the Nuclear Power Plant Instruments vol.65, pp.5, 2016, https://doi.org/10.5370/KIEE.2016.65.5.836
- Selection of optimal denoising-based regularization hyper-parameters for performance improvement in a sensor validation model pp.1573-7462, 2017, https://doi.org/10.1007/s10462-017-9546-6
- Predicting Diametral Creep of the Pressure Tubes in CANDU Reactors Using Fuzzy Neural Networks vol.48, pp.1, 2011, https://doi.org/10.1080/18811248.2011.9711681