DOI QR코드

DOI QR Code

Modulation of the aqueous extract of Bupleuri radix on glycine-induced current in the acutely dissociated rat periaqueductal gray neurons

  • Sung, Yun-Hee (Kohwang Medical Research Institute, Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Shin, Mal-Soon (Kohwang Medical Research Institute, Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Kim, Tae-Soo (Kohwang Medical Research Institute, Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Lee, Sang-Won (Department of Nursing Science, College of Nursing, Kyung Hee University) ;
  • Kim, Youn-Jung (Department of Nursing Science, College of Nursing, Kyung Hee University) ;
  • Shin, Hye-Sook (Department of Nursing Science, College of Nursing, Kyung Hee University) ;
  • Kim, Hong (Department of Oriental Sports Medicine, College of Herbal Bio-industry, Daegu Haany University) ;
  • Kim, Chang-Ju (Kohwang Medical Research Institute, Department of Physiology, College of Medicine, Kyung Hee University)
  • Published : 2008.02.29

Abstract

Bupleuri radix (Umbelliferae), the dried root of Bupleurum Chinense DC, has been clinically used to mitigate pain sensation. The descending pain control system consists of three major components, and modulation of pain in the periaqueductal gray is the most extensively studied descending pain control system. However, the relation of Bupleuri radix on the descending pain control system has not been clarified. In the present study, modulation of the aqueous extract of Bupleuri radix on glycine-induced ion current in the acutely dissociated periaqueductal gray neurons was investigated by using nystatin-perforated patch-clamp technique under voltage-clamp condition. In the present results, the glycine-induced ion current was significantly suppressed by 0.1 mg/ml Bupleuri radix, while treatment with $10^{-5}\;M$ naltrexone, opioid receptor antagonist, alleviated Bupleuri radix-induced inhibition on glycine-induced ion current. The present study showed that the aqueous extract of Bupleuri radix may activate descending pain control system through inhibition on glycine-induced ion current in the periaqueductal gray neurons and this effect is mediated by opioid receptors.

Keywords

References

  1. Basbaum AI, Fields HL. (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci. 7, 309-338 https://doi.org/10.1146/annurev.ne.07.030184.001521
  2. Bermejo Benito P, Abad Martinez MJ, Silvan Sen AM, Sanz Gomez A, Fernandez Matellano L, Sanchez Contreras S, Diaz Lanza AM. (1998) In vivo and in vitro antiinflammatory activity of saikosaponins. Life Sci. 63, 1147-1156 https://doi.org/10.1016/S0024-3205(98)00376-2
  3. Betz H, Laube B. (2006) Glycine receptors: recent insights into their structural organization and functional diversity. J. Neurochem. 97, 1600-1610 https://doi.org/10.1111/j.1471-4159.2006.03908.x
  4. Cheong BS, Choi DY, Cho NH, Lee JD, Chang HK, Shin MC, Shin MS, Kim CJ. (2004) Modulation of Corydalis tuber on glycine-induced ion current in acutely dissociated rat periaqueductal gray neurons. Biol. Pharm. Bull. 27, 1207-1211 https://doi.org/10.1248/bpb.27.1207
  5. Fields HL, Heinricher MM, Mason P. (1991) Neurotransmitters in nociceptive modulatory circuits. Annu. Rev. Neurosci. 14, 219-245 https://doi.org/10.1146/annurev.ne.14.030191.001251
  6. Fujiwara K, Kaminishi Y, Inoue Y, Yabuuchi M. (1998) Monoclonal antibody monospecific to glycine for brain immunocytochemistry. Brain Res. 806, 210-218 https://doi.org/10.1016/S0006-8993(98)00744-6
  7. Gurwitz D. (2001) Profile; glycine transporter GlyT-2 blockers: potential pain-relief and anti-spastic drugs. Drug Discov. Today 6, 1178-1179
  8. Han SH, Cho YW, Kim CJ, Min BI, Rhee JS, Akaike N. (1999) $\mu$-opioid agonist-induced activation of Gprotein- coupled inwardly rectifying potassium current in rat periaqueductal gray neurons. Neuroscience 90, 209-219 https://doi.org/10.1016/S0306-4522(98)00409-6
  9. Harvey R, Depner U, Wssle H, Ahmadi S, Heindl C, Reinold H, Smart T, Harvey K, Schtz B, Akbari O, Zimmer A, Poisbeau P, Welzl H, Wolfer DP, Betz H, Zeilhofer U, Mller U. (2004) GlyR $\alpha$3: an essential target for spinal $PGE_2$-mediated inflammatory pain sensitization. Science 304, 884-888 https://doi.org/10.1126/science.1094925
  10. Kim CJ, Rheee JS, Akaike N. (1997) Modulation of high-voltage activated $Ca^{2+}$ channels in the rat periaqueductal gray neurons by $\mu$-type opioid agonist. J. Neurophysiol. 77, 1418-1424
  11. Kim Y, Shin M, Chung J, Kim E, Koo G, Lee C, Kim C. (2001) Modulation of Chelidonii herba on GABA activated chloride currents in rat PAG neurons. Am. J. Chin. Med. 29, 265-279 https://doi.org/10.1142/S0192415X01000290
  12. Lane DA, Patel PA, Morgan MM. (2005) Evidence for an intrinsic mechanism of antinociceptive tolerance within the ventrolateral periaqueductal gray of rats. Neuroscience 135, 227-234 https://doi.org/10.1016/j.neuroscience.2005.06.014
  13. Li XQ, Gao QT, Chen XH, Bi KS. (2005) High performance liquid chromatographic assay of saikosaponins from radix Bupleuri in China. Biol. Pharm. Bull. 28, 1736-1742 https://doi.org/10.1248/bpb.28.1736
  14. Lopez-Corcuera B, Geerlings A, Aragon C. (2001) Glycine neurotransmitter transporters: an update. Mol. Membr. Biol. 18, 13-20
  15. Madison D, Nicoll RA. (1988) Enkephalin hyperpolarizes interneurones in the rat hippocampus. J. Physiol. 398, 122-130
  16. Maione S, Marabese I, Rossi F, Berrino L, Palazzo E, Trabace L. (2000) Effects of persistent nociception on periaqueductal gray glycine release. Neuroscience 97, 311-316 https://doi.org/10.1016/S0306-4522(00)00076-2
  17. Millan MJ, Czlonkowski A, Millan MH, Herz A. (1987) Activation of periaqueductal gray pools of aendorphin by analgetic electrical stimulation in freely moving rats. Brain Res. 407, 199-203 https://doi.org/10.1016/0006-8993(87)91239-X
  18. Min BI, Kim CJ, Rhee JS, Akaike N. (1996) Modulation of glycine-induced chloride current in acutely dissociated rat periaqueductal gray neurons by $\mu$- opioid agonist DAGO. Brain Res. 734, 72-78 https://doi.org/10.1016/0006-8993(96)00614-2
  19. Motoo Y, Sawabu N. (1994) Antitumor effects of saikosaponins, baicalin and baicalein on human hepatoma cell lines. Cancer Lett. 86, 91-95 https://doi.org/10.1016/0304-3835(94)90184-8
  20. O'Sullivan MG, Chilton FH, Huggins EM, Jr McCall CE. (1992) Lipopolysaccharide priming of alveolar macrophages for enhanced synthesis of prostanoids involves induction of a novel prostaglandin H synthase. J. Biol. Chem. 267, 14547-14550
  21. Pert A, Walter M. (1976) Comparison between naloxone reversal of morphine and electrical stimulation induced antinociception in the rat mesencephalon. Life Sci. 19, 1023-1032 https://doi.org/10.1016/0024-3205(76)90294-0
  22. Rhim H, Miller RJ. (1994) Opioid receptors modulate diverse types of calcium channels in the nucleus tractus solitarius of the rat. J. Neurosci. 14, 7608-7615
  23. Sato K, Zhang JH, Saika T, Sato M, Tada K, Tohyama M. (1991) Localization of glycine receptor ${\alpa}$1 subunit mRNA-containing neurons in the rat brain: an analysis using in situ hybridization histochemistry. Neuroscience 43, 381-395 https://doi.org/10.1016/0306-4522(91)90302-5
  24. Shin MC, Jang MH, Chang HK, Lim S, Han SM, Park HJ, Shim I, Lee JS, Kim KA, Kim CJ. (2003) Modulation of Chelidonii herba on glycine-activated and glutamate-activated ion currents in rat periaqueductal gray neurons. Clin. Chim. Acta 337, 93-101 https://doi.org/10.1016/j.cccn.2003.07.002
  25. Todd AJ, Watt C, Spike RC, Sieghart W. (1996) Colocalization of GABA, glycine and their receptors at synapses in the rat spinal cord. J. Neurosci. 16, 974-982
  26. Tortorici V, Vanegas H. (1994) Putative role of medullary off- and on-cells in the antinociception produced by dipyrone (metamizol) administered systemically or microinjected into PAG. Pain 57, 197-205 https://doi.org/10.1016/0304-3959(94)90224-0
  27. Ushio Y, Abe H. (1991) The effects of saikosaponin on macrophage functions and lymphocyte proliferation. Planta Med. 57, 511-514 https://doi.org/10.1055/s-2006-960195
  28. Vasquez E, Vanegas H. (2000) The antinociceptive effect of PAG-microinjected dipyrone in rats is mediated by endogenous opioids of the rostral ventromedical medulla. Brain Res. 854, 249-252 https://doi.org/10.1016/S0006-8993(99)02303-3
  29. Verri WA, Jr Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH. (2006) Hypernociceptive role of cytokines and chemokines: Targets for analgesic drug development? Pharmacol. Ther. 112, 116-138 https://doi.org/10.1016/j.pharmthera.2006.04.001
  30. Wei G, Moss J, Yuan CS. (2003) Opioid-induced immunosuppression: is it centrally mediated or peripherally mediated? Biochem. Pharmacol. 65, 1761- 1766
  31. Zhou C, Xia G, Zhi D, Chen Y. (2006) Genetic characterization of asymmetric somatic hybrids between Bupleurum scorzonerifolium Willd and Triticum aestivum L.: potential application to the study of the wheat genome. Planta 223, 714-724 https://doi.org/10.1007/s00425-005-0127-6