An Efficient Channel Tracking Method in MIMO-OFDM Systems

MIMO-OFDM에서 효율적인 채널 추적 방식

  • 전형구 (동의대학교정보통신과) ;
  • 김경수 (한국전자통신연구원 이동통신연구단) ;
  • 안지환 (한국전자통신연구원 이동통신연구단) ;
  • Published : 2008.03.31

Abstract

This paper proposes an efficient scheme to track the time variant channel induced by multi-path Rayleigh fading in mobile wireless Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems with null sub-carriers. In the proposed method, a blind channel response predictor is designed to cope with the time variant channel. The proposed channel tracking scheme consists of a frequency domain estimation approach that is coupled with a Minimum Mean Square Error (MMSE) time domain estimation method, and does not require any matrix inverse calculation during each OFDM symbol. The main attributes of the proposed scheme are its reduced computational complexity and good tracking performance of channel variations. The simulation results show that the proposed method exhibits superior performance than the conventional channel tracking method [4] in time varying channel environments. At a Doppler frequency of 100Hz and bit error rates (BER) of 10-4, signal-to-noise power ratio (Eb/N0) gains of about 2.5dB are achieved relative to the conventional channel tracking method [4]. At a Doppler frequency of 200Hz, the performance difference between the proposed method and conventional one becomes much larger.

본 논문에서는 다중 경로 레이리 페이딩 시변 채널 환경의 Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) 시스템에서 효율적으로 채널 변화를 추적할 수 있는 채널 추적방식을 제안하였다. 제안된 방식은 시변 채널에 대응할 수 있도록 블라인드 채널 예측기를 설계하였다. 또한 주파수 영역 채널 추정이 Minimum Mean Square Error (MMSE) 시간영역 채널 추정과 결합되어 있으며 이 방식은 매 OFDM 심벌마다 역행렬을 계산할 필요가 없다는 장점이 있다. 컴퓨터 시뮬레이션 결과 제안된 방식은 기존의 Li방식[4] 보다 성능이 우수함을 보였다. 도플러 주파수 100Hz 및 10-4 BER에서 Eb/No이득이 약 2.5 dB 정도 되었다. 도플러 주파수가 200Hz일 때 그 성능의 차이는 더욱 커졌다.

Keywords

References

  1. G. J. Foschini, "Layered space-time architecture for wireless communication in a fading environment using multiple antennas," Bell Labs Technical Journal, Vol.1, No.2, pp.41-59, Autumn 1996 https://doi.org/10.1002/bltj.2015
  2. J. Terry and J. Heiskala, OFDM Wireless LANs : A Theoretical and Practical Guide, Sams Publishing, 2002
  3. TTA, "2.3GHz Portable Internet Standard-Physical Layer", Oct. 2004
  4. Y. (G.) Li, N. Seshadri, and S. Ariyavisitakul, "Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels," IEEE J. Selected Areas on Communications, Vol.17, pp.461-471, March 1999 https://doi.org/10.1109/49.753731
  5. Y. (G.) Li, "Simplified channel estimation for OFDM systems with transmit antenna," IEEE Trans. Comm., Vol.1, pp.67-75, Jan. 2002 https://doi.org/10.1109/7693.975446
  6. Y. Gong, and K. B. Letaief, "Low complexity channel estimation for space-time coded widehand OFDM systems," IEEE Transactions on Wireless Comm., Vol.2, pp.876-882, Sept. 2003 https://doi.org/10.1109/TWC.2003.816797
  7. H. Minn, and D. I. Kim, and V. K. Bhargava, "A reduced complexity channel estimation for OFDM systems with Transmit diversity in mobile wireless channels," IEEE Transactions on Comm., Vol.50, No.5, pp.799-807, May 2002 https://doi.org/10.1109/TCOMM.2002.1006561
  8. H. Minn and N. Al-Dhahir, "Optimal training signals for MIMO OFDM channel estimation," Globecom 2004, Nov. 2004., pp.219-224
  9. D. Schafhuber, G. Matz, and F. Hlawatsch, "Kalman tracking of time-varying channels in wireless MIMO-OFDM systems", Asilomar Conf. on Signals, Systems and Computers 2003, Vol.2, pp.1261-1265, Nov. 2003
  10. K. A. G. Teo, S. Ohno, and T. Hinamoto, "Kalman channel estimation based on oversampled polynomial model for OFDM over doubly-selective channels," IEEE SPAWC 2005, pp. 116-120, June 2005
  11. Y. Chen, D. Jayalath, and A. Thushara, "Low complexity decision directed channel tracking for MIMO WLAN system," ISISPCS, pp 629-632, Dec. 2005, Hong Kong
  12. S. Haykin, Adaptive Filter Theory, 3rd ed., Prentice Hall, 1996
  13. H. Harada and R. Prasad, Simulation and Software Radio for mobile Communications, Artech House, 2002
  14. C. Komninakis, C. Fragouli, A. Sayed and R. Wesel "Multi-Input Multi-Output Fading Channel Tracking and Equalization Using Kalman Estimation," IEEE trans. on Signal Processing, Vol.50, No.5, pp.1065-1076, May 2002 https://doi.org/10.1109/78.995063
  15. Z. Yuanjin, "A Novel Channel Estimation and Tracking Method for Wireless OFDM systems Based on Pilots and Kalman filter," IEEE trans. on Consumer Electronics, Vol.49, No.2, pp.275-283, May 2003 https://doi.org/10.1109/TCE.2003.1209514
  16. X. Cai and G. B. Giannakis, "Bounding performance and suppressing intercarrier interference in wireless mobile OFDM," IEEE Trans. Commun., Vol.51, No.12, pp.2047-2056, Dec 2003 https://doi.org/10.1109/TCOMM.2003.820752