DOI QR코드

DOI QR Code

A Graphical Method for Evaluation of Stages in Shrinkage Cracking Using S-shape Curve Model

S형 곡선 모델을 적용한 수축 균열 단계 평가

  • Min, Tuk-Ki (Dept. of Civil & Environ. Engrg., Univ. of Ulsan) ;
  • Vo, Dai Nhat (Dept. of Civil & Environ. Engrg., Univ. of Ulsan)
  • Published : 2008.09.30

Abstract

The aim of this study is to present a graphical method in order to evaluate stages in shrinkage cracking. Firstly, the distribution of crack openings is established by sorting the openings of individual cracks in the soil cracking system. Secondly, it is normalized in a range of 0 to 1 to obtain the normalized crack opening distribution. Thirdly, three S-shape curve models introduced by Brooks and Corey(1964), Fredlund and Xing(1994) and van Genuchten(1980) are chosen to fit the normalized crack opening distribution using a curve fitting method. The accuracy of fitting which is described through fitting parameters by the van Genuchten equation is much higher than that by the Brooks and Corey equation and slightly higher than that by the Fredlund and Xing equation; thus the van Genuchten model is used. Finally, the stages of shrinkage cracking are graphically evaluated by drawing three separate straight lines corresponding to three linear parts of the fitted normalized crack opening distribution. The proposed method is tested with different sample thicknesses. The measured data are fitted by the selected model with the fairly high regression coefficient and small root mean square error. The results show graphically that shrinkage cracking comprises three stages; namely, primary, secondary and residual stages. Subsequently, the ranges of evaluated crack opening for each of these stages are presented.

본 연구에서는 수축균열 단계를 나타낼 수 있는 도해적인 방법을 제안하였다. 우선 발생된 균열들을 균열폭의 크기 순서대로 나열하여 균열 분포를 구하였다. 다음에 균열폭을 정규화하여 0에서 1사이의 값으로 나타내었다. 마지막으로 Brooks와 Corey(1964), Fredlund와 Xing(1994), van Genuchten(1980)이 제안한바 있는 S형 곡선모델에 실험 결과를 적용시켰다. 분석 결과 van Genuchten의 식이 Brooks와 Corey식보다 정확도가 크게 높은 것으로 나타났으며, Fredlund와 Xing식보다도 높게 나타나 van Genuchten의 식을 적용하였다. 결과적으로 수축균열의 단계는 정규화 된 균열폭 분포가 3개의 직선부로 나누이는 도해적인 방법으로 나타낼 수 있었다. 제안된 방법의 적용성을 보기 위해 시료의 두께에 변화를 주며 시험을 실시하였다. 측정된 데이터를 제안된 모델에 적용하여 본 결과 높은 상관성을 보여 주었다. 따라서 수축 균열은 초기수축단계, 이차수축단계 그리고 잔류수축단계의 3단계로 모사할 수 있었다. 또한 각 단계에서의 균열 폭의 범위를 제시하였다.

Keywords

References

  1. Albrecht, B. A. and Benson, C. H. (2001), "Effect of Desiccation on Compacted Natural Clays", Journal of Geotechnical and Geoenvironmental Engineering, Vol.127, No.1, pp.67-75 https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(67)
  2. Fredlund, D. G. (2006), "Unsaturated Soil Mechanics in Engineering Practice", Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.3, pp.286-321 https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(286)
  3. Horgan, G. W. and Young, I. M. (2000), "An Empirical Stochastic Model for the Geometry of Two-dimensional Crack Growth in Soil", Geoderma, Vol.96, Issue. 4, pp.263-276 https://doi.org/10.1016/S0016-7061(00)00015-X
  4. Hu, L. B., Peron, H., Hueckel, T. and Laloui, L. (2006), "Numerical and Phenomenological Study of Desiccation of Soil", Advances in Unsaturated Soil, Seepage, and Environmental Geotechnics (GSP 148), Proceedings of Sessions of GeoShanghai 2006, pp.166-173
  5. Jian, Z. and Jian-lin, Y. (2005), "Influences Affecting the Soil-Water Characteristic Curve", Institute of Geotechnical Engineering, Vol.6, No.8, pp.797-804
  6. Kamiya, K., Bakrie, R. and Honjo, Y. (2006), "A New Method for the Measurement of Air Permeability Coefficient of Unsaturated Soil", Proceedings of the Fourth International Conference on Unsaturated Soils, Vol.2, pp.1741-1752
  7. Kodikara, J. K., Barbour, S. L. and Fredlund, D. G. (1999), "Changes in Clay Structure and Behavior due to Wetting and Drying", Proceedings of the 8th Australian-New Zealand Conference on Geomechanics, Hobart Tasania, pp.179-186
  8. Kodikara, J. K., Barbour, S. L. and Fredlund, D. G. (2000), "Desiccation Cracking of Soil Layers", Unsaturated Soils for Asia, Rahardjo, Toll & Leong (eds). Balkema, Rotterdam, ISBN 90 5809 139 2, pp.693-698
  9. Konrad, J.-M. and Ayad, R. (1997), "Desiccation of a Sensitive Clay: Field Experimental Observations", Canadian Geotechnical Journal, Vol.34, No.6, pp.929-942 https://doi.org/10.1139/cgj-34-6-929
  10. Lecocq, N. and Vandewalle, N. (2003), "Dynamics of Crack Opening in a One-dimensional Desiccation Experiment", Physica A: Statistical Mechanics and Its Applications, Vol.321, Issues. 3-4, pp.431-441 https://doi.org/10.1016/S0378-4371(02)01538-8
  11. Liu, C. W., Chen, S. K. and Jang, C. S. (2004), "Modelling Water Infiltration in Cracked Paddy Field Soil", Hydrological Processes, Vol.18, No.13, pp.2503-2513 https://doi.org/10.1002/hyp.1478
  12. Mal, D., Sinha, S., Mitra, S. and Tarafdar, S. (2005), "Formation of Crack Networks in Drying Laponite Films", Physica A: Statistical Mechanics and Its Applications, Vol. 346, Issues. 1-2, pp.110-115 https://doi.org/10.1016/j.physa.2004.08.056
  13. Min, T. K. and Vo-Dai, N. (2007), "A Simple Model of Shrinkage Cracking Development for Kaolinite", Journal of the Korean Geotechnical Society, Vol.23, No.9, pp.29-37
  14. Morris, P. H., Graham, J. and Williams, D. J. (1993), "Cracking in Drying Soils", International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Vol.30, No.2, pp. 263-277
  15. Peng, X., Horn, R., Peth, S. and Smucker, A. (2006), "Quantification of Soil Shrinkage in 2D by Digital Image Processing of Soil Surface", Soil & Tillage Research, Vol.91, Issues. 1-2, pp.173-180 https://doi.org/10.1016/j.still.2005.12.012
  16. Sharma, R. S., Mohamed, M. H. A. and Lewis, B. A. (2002), "Prediction of Degree of Saturation in Unsaturated Soils Using Image Analysis Technique", Unsaturated Soils, The Proceedings of the 3rd International Conference on Unsaturated Soils (UNSAT 2002) Recife, Brazil, Vol.1, pp.369-374
  17. Sharma, R. S. and Mohamed, M. H. A. (2003), "An Experimental Investigation of LNAPL Migration in an Unsaturated/Saturated Sand", Engineering Geology, Vol.70, Issues. 3-4, pp.305-313 https://doi.org/10.1016/S0013-7952(03)00098-X
  18. Sillers, W. S. and Fredlund, D. G. (2002), "Statistical Assessment of Soil-water Characteristic Curve Models for Geotechnical Engineering", Canadian Geotechnical Journal, Vol.38, No.6, pp. 1297-1313 https://doi.org/10.1139/cgj-38-6-1297
  19. Sriboonlue, V., Srisuk, K., Konyai, S. and Khetkratok, N. (2006), "Unsaturated Hydraulic Conductivity for upward Flow in Soil", Proceedings of the Fourth International Conference on Unsaturated Soils, Vol.2, pp.1503-1512
  20. Tay, Y. Y., Stewart, D. I. and Cousens, T. W. (2001), "Shrinkage and Desiccation Cracking in Bentonite-Sand Landfill Liners", Engineering Geology, Vol.60, Issues. 1-4, pp.263-274 https://doi.org/10.1016/S0013-7952(00)00107-1
  21. Velde, B. (1999), "Structure of Surface Cracks in Soil and Muds", Geoderma, Vol.93, Issues. 1-2, pp.101-124 https://doi.org/10.1016/S0016-7061(99)00047-6
  22. Velde, B. (2001), "Surface Cracking and Aggregate Formation Observed in a Rendzina Soil, La Touche (Vienne) France", Geoderma, Vol.99, Issues. 3-4, pp.261-276 https://doi.org/10.1016/S0016-7061(00)00074-4
  23. Vogel, H.-J., Hoffmann, H. and Roth, K. (2005), "Studies of Crack Dynamics in Clay Soil I. Experimental Methods, Results, and Morphological Quantification", Geoderma, Vol.125, Issues. 3-4, pp.203-211 https://doi.org/10.1016/j.geoderma.2004.07.009
  24. Wijeyesekera, D. C. and Papadopoulou, M. C. (2001), "Cracking in Clays with an Image Analysis Perspective", Clay Science for Engineering, Adachi & Fukue (eds) Balkema, Rotterdam, ISBN 90 5809 175 9, pp.437-482
  25. Yesiller, N., Miller, C. J., Inci, G. and Yaldo, K. (2000), "Desiccation and Cracking Behavior of Three Compacted Landfill Liner Soils", Engineering Geology, Vol.57, Issues. 1-2, pp.105-121 https://doi.org/10.1016/S0013-7952(00)00022-3
  26. Zhang, L. and Chen, Q. (2005), "Predicting Bimodal Soil-Water Characteristic Curves", Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.5, pp.666-670 https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(666)