DOI QR코드

DOI QR Code

Life History Traits and the Rate of Molecular Evolution in Galliformes (Aves)

  • Eo, Soo-Hyung (Warnell School of Forestry and Natural Resources, University of Georgia)
  • Published : 2008.02.28

Abstract

Rates of molecular evolution are known to vary widely among taxonomic groups. A number of studies, examining various taxonomic groups, have indicated that body size is negatively and clutch size is positively correlated with the rates of nucleotide substitutions among vertebrate species. Generally, either smaller body mass or larger clutch size is associated with shorter generation times and higher metabolic rates. However, this generality is subject to ongoing debate, and large-scale comparative studies of species below the Order level are lacking. In this study, phylogenetically independent methods were used to test for relationships between rates of the mitochondrial cytochrome b evolution and a range of life history traits, such as body mass and clutch size in the Order Galliformes. This analysis included data from 67 species of Galliformes birds and 2 outgroup species in Anseriformes. In contrast to previous studies, taxa were limited to within-Order level, not to Class or higher. I found no evidence to support an effect of life history traits on the rate of molecular evolution within the Galliformes. These results suggest that such relationship may be too weak to be observed in comparisons of closely related species or may not be a general pattern that is applicable to all nucleotide sequences or all taxonomic groups.

Keywords

References

  1. Amstrong MH, Braun EL, Kimball RT. 2001. Phylogenetic utility of avian ovomucoid intron G: a comparison of nuclear and mitochondrial phylogenies in galliformes. Auk 118: 799-804 https://doi.org/10.1642/0004-8038(2001)118[0799:PUOAOI]2.0.CO;2
  2. Barraclough TG, Harvey PH, Nee S. 1996. Rate of rbcL gene sequence evolution and species diversification in flowering plants. Proc R Soc Lond B 263: 589-591
  3. Barraclough TG, Nee S, Harvey PH. 1998. Sister-group analysis in identifying correlates of diversification. Evol Ecol 12: 751-754 https://doi.org/10.1023/A:1017125317840
  4. Barraclough TG, Savolainen V. 2001. Evolutionary rates and species diversity in flowering plants. Evolution 55: 677-683 https://doi.org/10.1554/0014-3820(2001)055[0677:ERASDI]2.0.CO;2
  5. Britten RJ. 1986. Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393-1398 https://doi.org/10.1126/science.3082006
  6. Bromham L. 2002. Molecular clocks in reptiles: life history influences rate of molecular evolution. Mol Biol Evol 19: 302-309 https://doi.org/10.1093/oxfordjournals.molbev.a004083
  7. Bromham L, Cardillo M. 2003. Testing the link between the latitudinal gradient in species richness and rates of molecular evolution. J Evol Biol 16: 200-207 https://doi.org/10.1046/j.1420-9101.2003.00526.x
  8. Bromham L, Penny D. 2003. The modern molecular clock. Nat Rev Genet 4: 216-224 https://doi.org/10.1038/nrg1020
  9. Bromham L, Leys R. 2005. Sociality, population size and rate of molecular evolution. Mol Biol Evol 22: 1393-1402 https://doi.org/10.1093/molbev/msi133
  10. Del Hoyo J, Elliott A, Sargatal J. 1994. Handbook of the birds of the world. vol.II. New World Vultures to Guineafowl. Lynx Edicions, Barcelona
  11. Dunning JB. 1993. CRC handbook of avian body masses. CRC Press, Boca Raton
  12. Engstrom TN, Shaffer HB, McCord WP. 2004. Multiple data sets, high homoplasy, and the phylogeny of softshell turtles (Testudines: Trionychidae). Syst Biol 53: 693-710 https://doi.org/10.1080/10635150490503053
  13. Felsenstein J. 1985. Phylogenies and the comparative method. Am Nat 125: 1-15 https://doi.org/10.1086/284325
  14. Fujita MK, Engstrom TN, Starkey DE, Shaffer HB. 2004. Turtle phylogeny: insights from a novel nuclear intron. Mol Phylogenet Evol 31: 1031-1040 https://doi.org/10.1016/j.ympev.2003.09.016
  15. Garcia-Machado E, Pempera M, Dennebouy N, Oliva-Suarez M, Mounolou JC, Monnerot M. 1999. Mitochondrial genes collectively suggest the paraphyly of crustacea with respect to insecta. J Mol Evol 49: 142-149 https://doi.org/10.1007/PL00006527
  16. Gillooly JF, Allen AP, West GB, Brown JH. 2005. The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc Natl Acad Sci 102: 140-145
  17. Harvey PH, Pagel M. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford
  18. Held C. 2001. No evidence for slow-down of molecular substitution rates at subzero temperatures in Antarctic serolid isopods (Crustacea, Isopoda, Serolidae). Polar Biol 24: 497-501 https://doi.org/10.1007/s003000100245
  19. Kohne DE. 1970. Evolution of higher-organism DNA. Q Rev Biophys 33: 327-375
  20. Kumar S, Tamura K, Nei M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings Bioinformatics 5: 150-163 https://doi.org/10.1093/bib/5.2.150
  21. Madge S, McGowan P. 2002. Pheasants, Partridges, & Grouse. Princeton university press, Princeton
  22. Martin AP, Palumbi SR. 1993. Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci 90: 4087-4091
  23. Mooers AO, Harvey PL. 1994. Metabolic rate, generation time, and the rate of molecular evolution in birds. Mol Phylogenet Evol 3: 344-350 https://doi.org/10.1006/mpev.1994.1040
  24. Naylor GJP, Brown WM. 1998. Amphioxus mitochondrial DNA, chordate phylogeny, and the limits of inference based on comparisons of sequences. Syst Biol 47: 61-76 https://doi.org/10.1080/106351598261030
  25. Nunn GB, Stanley SE. 1998. Body size effects and rates of cytochrome b evolution in Tube-nosed Seabirds. Mol Biol Evol 15: 1360-1371 https://doi.org/10.1093/oxfordjournals.molbev.a025864
  26. Page RDM, Holmes EC. 1998. Molecular evolution: a phylogenetic approach. Blackwell Science, Oxford
  27. Prychitko TM, Moore WS. 2003. Alignment and phylogenetic analyses of b-fibrinogen intron 7 sequences among avian orders reveal conserved regions within the intron. Mol Biol Evol 20: 762-771 https://doi.org/10.1093/molbev/msg080
  28. Rand DM. 1994. Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends Ecol Evol 9: 125-131 https://doi.org/10.1016/0169-5347(94)90176-7
  29. Robinson M, Gouy M, Gautier C, Mouchiroud D. 1998. Sensitivity of the relative-rate test to taxonomic sampling. Mol Biol Evol 15: 1091-1098 https://doi.org/10.1093/oxfordjournals.molbev.a026016
  30. Rowe DL, Honeycutt RL. 2002. Phylogenetic relationships, ecological correlates, and molecular evolution within the cavioidea (mammalia, rodentia). Mol Biol Evol 19: 263-277 https://doi.org/10.1093/oxfordjournals.molbev.a004080
  31. Schmitz J, Moritz RFA. 1998. Sociality and the rate of rDNA sequence evolution in wasps (Vespidae) and honeybees (Apis). J Mol Evol 47: 606-612 https://doi.org/10.1007/PL00006417
  32. Thomas JA, Welch JJ, Woolfit M, Bromham. 2006. There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. Proc Natl Acad Sci 103: 7366-7371
  33. Wiens JJ, Hollingsworth BD. 2000. War of the Iguanas: conflicting molecular and morphological phylogenies and long-branch attraction in iguanid lizards. Syst Biol 49: 143-159 https://doi.org/10.1080/10635150050207447
  34. Wu C, Li W. 1985. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci 82: 1741-1745
  35. Yoder AD, Yang Z. 2000. Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol 17: 1081-1090 https://doi.org/10.1093/oxfordjournals.molbev.a026389
  36. Zhong Y, Zhao Q, Shi S, Huang Y, Hasegawa M. 2002. Detecting evolutionary rate heterogeneity among mangroves and their close terrestrial relatives. Ecol Lett 5: 427-432 https://doi.org/10.1046/j.1461-0248.2002.00336.x