A Pilot Study for the Feasibility of F-18 FLT-PET in Locally Advanced Breast Cancer: Comparison with F-18 FDG-PET

국소진행성 유방암에서 F-18 FLT-PET 적용 가능성에 대한 예비 연구: F-18 FDG-PET와 비교

  • Hyuen, Lee-Jai (Departments of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Euy-Nyong (Departments of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Hong, Il-Ki (Departments of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Ahn, Jin-Hee (Departments of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Sung-Bae (Departments of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Ahn, Sei-Hyun (Departments of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Gong, Gyung-Yup (Departments of Pathology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Jae-Seung (Departments of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Oh, Seung-Jun (Departments of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Moon, Dae-Hyuk (Departments of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Ryu, Jin-Sook (Departments of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine)
  • 이재현 (서울아산병원 울산대학교 핵의학교실) ;
  • 김의녕 (서울아산병원 울산대학교 핵의학교실) ;
  • 홍일기 (서울아산병원 울산대학교 핵의학교실) ;
  • 안진희 (서울아산병원 울산대학교 내과학교실) ;
  • 김성배 (서울아산병원 울산대학교 내과학교실) ;
  • 안세현 (서울아산병원 울산대학교 외과학교실) ;
  • 공경엽 (서울아산병원 울산대학교 병리학교실) ;
  • 김재승 (서울아산병원 울산대학교 핵의학교실) ;
  • 오승준 (서울아산병원 울산대학교 핵의학교실) ;
  • 문대혁 (서울아산병원 울산대학교 핵의학교실) ;
  • 류진숙 (서울아산병원 울산대학교 핵의학교실)
  • Published : 2008.02.29

Abstract

Purpose: The aim of this study was to investigate the feasibility of 3 ' -[F-18]fluoro-3 ' -deoxythymidine positron emission tomography(FLT-PET) for the detection of locally advanced breast cancer and to compare the degree of FLT and 2' -deoxy-2 ' -[F-18]fluoro-d-glucose(FDG) uptake in primary tumor, lymph nodes and other normal organs. Material & Methods: The study subjects consisted of 22 female patients (mean age; $42{\pm}6$ years) with biopsy-confirmed infiltrating ductal carcinoma between Aug 2005 and Nov 2006. We performed conventional imaging workup, FDG-PET and FLT PET/CT. Average tumor size measured by MRI was $7.2{\pm}3.4$ cm. With visual analysis, Tumor and Lymph node uptakes of FLT and FDG were determined by calculation of standardized uptake value (SUV) and tumor to background (TB) ratio. We compared FLT tumor uptake with FDG tumor uptake. We also investigated the correlation between FLT tumor uptake and FDG tumor uptake and the concordant rate with lymph node uptakes of FLT and FDG. FLT and FDG uptakes of bone marrow and liver were measured to compare the biodistribution of each other. Results: All tumor lesions were visually detected in both FLT-PET and FDG-PET. There was no significant correlation between maximal tumor size by MRI and SUVmax of FLT-PET or FDG-PET (p>0.05). SUVmax and $$SUV_{75} (average SUV within volume of interest using 75% isocontour) of FLT-PET were significantly lower than those of FDG-PET in primary tumor (SUVmax; $6.3{\pm}5.2\;vs\;8.3{\pm}4.9$, p=0.02 /$SUV_{75};\;5.3{\pm}4.3\;vs\;6.9{\pm}4.2$, p=0.02). There is significant moderate correlation between uptake of FLT and FDG in primary tumor (SUVmax; rho=0.450, p=0.04 / SUV75; rho=0.472, p=0.03). But, TB ratio of FLT-PET was higher than that of FDG-PET($11.7{\pm}7.7\;vs\;6.3{\pm}3.8$, p=0.001). The concordant rate between FLT and FDG uptake of lymph node was reasonably good (33/34). The FLT SUVs of liver and bone marrow were $4.2{\pm}1.2\;and\;8.3{\pm}4.9$. The FDG SUVs of liver and bone marrow were $1.8{\pm}0.4\;and\;1.6{\pm}0.4$. Conclusion: The uptakes of FLT were lower than those of FDG, but all patients of this study revealed good FLT uptakes of tumor and lymph node. Because FLT-PET revealed high TB ratio and concordant rate with lymph node uptakes of FDG-PET, FLT-PET could be a useful diagnostic tool in locally advanced breast cancer. But, physiological uptake and individual variation of FLT in bone marrow and liver will limit the diagnosis of bone and liver metastases.

목적: 최근에 세포증식성 PET 방사성의약품으로 소개되고 있는 FLT를 이용하여 국소진행성 유방암 환자에서 FLT-PET 영상을 시행하여 종양 영상으로서의 향후 적용 가능성을 살펴보고, FDG와 FLT의 섭취양상에 대한 비교 및 정상 장기에 대한 섭취분포 양상을 알아보고자 하였다. 대상 및 방법: 본 연구는 2005년 8월부터 2006년 11월까지 총 22명(모두 여성, 평균나이; 42세)의 국소진행성 유방암 진단 받은 환자들을 대상으로 하였으며, 모든 종양의 조직형은 침윤성관상피암이었다. 모든 환자를 대상으로 하여 conventional imaging workup, FLT PET/CT, FDG-PET를 시행하였다. MRI로 측정 한 종양 장경의 평균은 $7.2{\pm}3.4$ cm 이었다. 원발 병소와 림프절 섭취에 대한 육안적인 분석과 반정량적인 분석(SUVmax, $SUV_{75}$, TB ratio)을 하였고, 림프절 섭취에 대한 FDG-PET와 FLT-PET의 일치도를 살펴보았다. 정상장기에서의 FLT와 FDG 분포양상을 비교하기 위해 간과 골수의 SUVmax와 $SUV_{75}$을 측정하였다. 결과: 모든 원발 종양근 FLT-PET와 FDG-PET에서 섭취 증가를 나타냈다. MR로 측정한 종양 장경과 FLT-PET 또는 FDG-PET의 SUVmax간에 유의한 상관관계는 없었다(p>0.05). 종양의 SUVmax (FLT $6.5{\pm}5.2$ vs FDG $8.3{\pm}4.9$, p=0.02)와 $SUV_{75}$ (FLT $5.3{\pm}4.3$ vs FDG $6.9{\pm}4.2$, p=0.02)에서는 FDG가 FLT보다 유의하게 높았으며, 중등도의 유의한 상관관계를 보였다(SUVmax; rho=0.450, p=0.04 / $SUV_{75}$; rho=0.472, p=0.03). 반면, TB 섭취비는 FLT가 FDG보다 현저히 높았다(FLT $11.7{\pm}7.7$ vs FDG $6.3{\pm}3.8$, p=0.001). 림프절 섭취 분포에 대한 비교에서는 FDG와 FLT-PET는 34개 구역에서 33개가 일치하였다. FLT와 FDG의 정상 장기의 섭취분포를 보았을 때 FLT는 간(FLT $4.2{\pm}1.2$ vs FDG $1.8{\pm}0.4$)과 골수(FLT $7.4{\pm}1.2$ vs FDG $1.6{\pm}0.4$)의 섭취가 FDG보다 높고 환자마다 다양하였다. 결론: 국소진행성 유방암에서 FTLT는 FDG보다 종양 섭취도는 낮지만 종양과 전이 림프절 섭취가 PET에서 잘 관찰되었다. FLT-PET는 종양 대 주변섭취의 비가 FDG-PET보다 높았으며, 전이 림프절의 진단에서도 FDG-PET와 높은 일치율을 보여 종양 진단 영상으로 유용할 것으로 생각된다. FLT는 정상 간과 골수 조직의 섭취가 높고 개인차가 커서 이들 장기의 전이를 진단하는 데는 제한적일 것으로 생각된다.

Keywords

References

  1. Nationalwide korean breast cancer date of 2002. J Korean Breast Cancer Soc 2004;7:72-83 https://doi.org/10.4048/jkbcs.2004.7.2.72
  2. Singletary SE, Allred C, Ashley P, Bassett LW, Berry D, Bland KI, et al. Revision of the American Joint Committee on Cancer staging system for breast cancer. J Clin Oncol 2002;20:3628-36 https://doi.org/10.1200/JCO.2002.02.026
  3. Valagussa P, Zambetti M, Bignami P, Lena MD, Varini M, Zucali R, et al. T3b-T4 breast cancer: factors affecting results in combined modality treatments. Clin Exp Metastasis 1983;1:191-202 https://doi.org/10.1007/BF00121498
  4. Duraker N, Caynak ZC. Prognostic value of the 2002 TNM classification for breast carcinoma with regard to the number of metastatic axillary lymph nodes. Cancer 2005;104:700-7 https://doi.org/10.1002/cncr.21199
  5. Wiele CVD, Dierckx R, Scopinaro F, Waterhouse R, Annovazzi A, Kolindou A, et al. Nuclear medicine imaging for prediction or early assessment of response to chemotherapy in patients suffering from breast carcinoma. Breast Cancer Res Treat 2002;72:279-86 https://doi.org/10.1023/A:1014921910733
  6. Yap CS, Seltzer MA, Schiepers C, Gambhir SS, Rao J, Phelps ME, et al. Impact of whole-body 18F-FDG PET on staging and managing patients with breast cancer: the referring physician's perspective. J Nucl Med 2001;42:1334-7
  7. Schwarz JD, Bader M, Jenicke L, Hemminger G, Janicke F, Avril N. Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J Nucl Med 2005;46:1144-50
  8. Strauss LG. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med Mol Imaging 1996;23:1409-15 https://doi.org/10.1007/BF01367602
  9. Shields AF. PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls. J Nucl Med 2003;44:1432-4
  10. Sherley JL, Kelly TJ. Regulation of human thymidine kinase during the cell cycle. J Biol Chem 1988;263:8350-8
  11. Smyczek-Gargya B, Fersis N, Dittmann H, Vogel U, Reischl G, Machulla HJ, et al. PET with 18F fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging 2004;31:720-4 https://doi.org/10.1007/s00259-004-1462-8
  12. Giordano SH. Update on locally advanced breast cancer. The Oncologist 2003;8:521-30 https://doi.org/10.1634/theoncologist.8-6-521
  13. Pio BS, Park CK, Pietras R, Hsueh WA, Satyamurthy N, Pegram MD, et al. Usefulness of 3'-F-18 fluoro-3'-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 2006;8:36-42 https://doi.org/10.1007/s11307-005-0029-9
  14. Van Westreenen HL, Cobben DC, Jager PL, Van Dullemen HM, Wesseling J, Elsinga PH, et al. Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med 2005;46:400-4
  15. Cobben DC, Van Der Laan BF, Maas B, Vaalburg W, Suurmeijer AJ, Hoekstra HJ, et al. 18F-FLT PET for visualization of laryngeal cancer: comparison with 18F-FDG PET. J Nucl Med 2004;45:226-31
  16. Dittmann H, Dohmen BM, Paulsen F, Eichhorn K, Eschmann SM, Horger M, et al. 18F FLT PET for diagnosis and staging of thoracic tumours. Eur J Nucl Med Mol Imaging 2003;30:1407-12 https://doi.org/10.1007/s00259-003-1257-3
  17. Francis DL, Visvikis D, Costa DC, Arulampalam TH, Townsend C, Luthra SK, et al. Potential impact of 18F 3'-deoxy-3'-fluorothymidine versus 18F fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 2003;30:988-94 https://doi.org/10.1007/s00259-003-1187-0
  18. Yap CS, Czernin J, Fishbein MC, Cameron RB, Schiepers C, Phelps ME, et al. Evaluation of thoracic tumors with 18Ffluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest 2006;129:393-401 https://doi.org/10.1378/chest.129.2.393
  19. Tran A, Pio BS, Khatibi B, Czernin J, Phelps ME, Silverman DH. 18F-FDG PET for staging breast cancer in patients with innerquadrant versus outer-quadrant tumors: comparison with long-term clinical outcome. J Nucl Med 2005;46:1455-9
  20. Cobben DC, Elsinga PH, Hoekstra HJ, Suurmeijer AJ, Vaalburg W, Maas B, et al. Is 18F-3'-fluoro-3'-deoxy-L-thymidine useful for the staging and restaging of non-small cell lung cancer? J Nucl Med 2004;45:1677-82
  21. Oh SJ, Mosdzianowski C, Chi DY, Kim JY, Kang SH, Ryu JS, et al. Fully automated synthesis system of 3'-deoxy-3'-18F fluorothymidine. Nucl Med Biol 2004;31:803-9 https://doi.org/10.1016/j.nucmedbio.2004.01.008
  22. Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ, Elsinga PH. 18F FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 2004;31:1659-72 https://doi.org/10.1007/s00259-004-1687-6
  23. Broet P, Romain S, Daver A, Ricolleau G, Quillien V, Rallet A, et al. Thymidine kinase as a proliferative marker: clinical relevance in 1,692 primary breast cancer patients. J Clin Oncol 2001;19:2778-87 https://doi.org/10.1200/JCO.2001.19.11.2778
  24. Romain S, Bendahl PO, Guirou O, Malmstrom P, Martin PM, Ferno M. DNA-synthesizing enzymes in breast cancer (thymidine kinase, thymidylate synthase and thymidylate kinase): association with flow cytometric S-phase fraction and relative prognostic importance in node-negative premenopausal patients. Int J Cancer 2001;95:56-61 https://doi.org/10.1002/1097-0215(20010120)95:1<56::AID-IJC1010>3.0.CO;2-3
  25. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with F-18 FLT and positron emission tomography. Nat Med 1998;4:1334-6 https://doi.org/10.1038/3337
  26. Shields AF, Dohmen BM, Mangner TJ, Lawhorn-Crews JM, Machulla HJ, Muzik O, et al. Imaging of thoracic tumors with 18F-FLT. J Nucl Med 2000;41:74
  27. Nakamoto Y, Osman M, Cohade C, Marshall LT, Links JM, Kohlmyer S, et al. PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuationcorrected images. J Nucl Med 2002;43:1137-43