Biodegradation of Cutting Oil by Pseudomonas aeruginosa KS47

Pseudomonas aeruginosa KS47에 의한 절삭유의 생물학적 분해

  • 김란희 (경기대학교 일반대학원 생명공학과) ;
  • 이상섭 (경기대학교 일반대학원 생명공학과)
  • Published : 2008.03.31

Abstract

Cutting oils are emulsionable fluids widely used in metal working processes. Their composition is mineral oil, water, and additives (fatty acids, surfactants, biocides, etc.) generating a toxic waste after a long use. Cutting oils also affect colour, taste and odour of water, making it undesirable for domestic and industrial uses. In these days, conventional treatment methods as evaporation, membrane separation or chemical separation have major disadvantages since they generate a concentrated stream that is more harmful than the original waste. In this study, our purpose is to reduce cutting oils by using biological treatment. Eighty one strains were isolated from cutting waste oil of industrial waste water sludge under aerobic conditions. Among these strains, KS47, which removed 90.4% cutting oil in 48 hr, was obtained by screening test under aerobic conditions(pH 7, $28^{\circ}C$). KS47 was identified as Pseudomonas aeruginosa according to morphological, physiological and biochemical properties, 16S rDNA sequence, and fatty acid analysis. P. aeruginosa KS47 could utilize cutting oil as carbon source. In batch test, we obtained optimal degradation conditions(1.5 g/L cell concentration, pH 7, and temperature $30^{\circ}C$). Under the optimal conditions, 1,060 mg/L cutting oil was removed 83.7% (74.1 mg/L/hr).

본 실험은 생분해가 어려운 절삭유를 단일 균주에 의해 생물학적 처리를 하는 데에 목적이 있다. 절삭유, 절삭폐유로부터 호기 균주 81개를 분리하여 이중 절삭유 분해능이 가장 높은 균주로, 48시간 내에 90.4%를 제거한(초기농도 699.1 mg/L) KS47을 선별하였다. KS47은 형태학적, 생리 화학적, 16S rDNA 염기서열, 그리고 지방산 분석을 통해 Pseudomonas aeruginosa로 동정되었다. P. aeruginosa KS47은 절삭유를 탄소원으로 사용하여 성장 할 수 있었으며, 절삭유 분해시, 최적 분해 조건은 1.5 g/L(wet weight), pH 7.0, $30^{\circ}C$이었다. 최적 조건 하에서 절삭유의 제거능을 본 결과, 1,060 mg/L의 절삭유를 12시간 내에 83.7% 제거함을 확인하였다.

Keywords

References

  1. 차미선, 한창민, 박근태, 조순자, 손홍주, 이상준. 2003. 수용성 금속가공유 폐액의 생물학적 처리. Korean J. Life Sci. 13, 917-923 https://doi.org/10.5352/JLS.2003.13.6.917
  2. Baltzer, I.M., M. Sandin, B. Ahlstrom, S. Allenmark, M. Edebo, E. Falsen, K. Pedersen, N. Rodin, R.A. Thompson, and L. Edebo. 1989. Microbial growth and accumulation in industrial metal working fluids. Appl. Environ. Microbiol. 55, 2681-2689
  3. Benka-Coker, M.O. and A. Olumagin. 1995. Waste drilling fluid utilising microorganisms in a tropical mangrove swamp oilfield location. Bioresour. Technol. 53, 211-215 https://doi.org/10.1016/0960-8524(95)00055-1
  4. Brenner, D.J., N.R. Krieg, and J.T. Staley. 2005. Bergey's manual of systematic bacteriology, 2nd Edition, p. 354-358
  5. Bu, K.L.M., E.L. Prince, and C.J. Knowles. 1997. The ability of selected bacterial isolates to utilise components of synthetic metal working components of synthetic metal working fluids as sole sources of carbon and nitrogen for growth. Biotechnol. Lett. 19, 791-794 https://doi.org/10.1023/A:1018300628816
  6. Burke, J.M. 1991. Waste treatment of metal working fluids, a comparison of three common methods. Lubr. Eng. 47, 238-246
  7. Cookson, J.O. 1977. An introduction to cutting fluids. Tribiology Int. 10, 5-7
  8. Cheng, C., D. Phipps, and R.M. Alkhaddar. 2005. Treatment of spent metalworking fluids. Wat. Res. 39, 4051-4063 https://doi.org/10.1016/j.watres.2005.07.012
  9. Clescerl, L.S., A.E. Greenberg, and A.D. Eaton. 1998. Standard methods. 20th ed., p. 5-17
  10. Deepak, D., K.V. Anand, and R. Bhargava. 1994. Biodegradation kinetics of metal cutting oil: evaluation of kinetic parameters. Chem. Eng. J. 56, B91-B96
  11. DTI (The Department of Trade and Industry). 2000. A guide to biological treatment for metalworking fluid disposal
  12. Kim, B.R., M.J. Matz, and F. Lipari. 1989. Treatment of a metal cutting fluids wastewater using an anaerobic GAC fluids wastewater using an anaerobic GAC fluidized bed reactor. J. Water Pollut. Control Fed. 61, 1430-1439
  13. Kim, B.R., S.G. Anderson, and J.F. Zemla. 1992. Aerobic treatment of metal cutting fluid wastewater. Wat. Environ. Res. 64, 258-262 https://doi.org/10.2175/WER.64.3.10
  14. Kim, B.R., J.F. Zemla, S.G. Anderson, D.P. Stroup, and D.N. Rai. 1992. Anaerobic removal of COD in metal cutting fluid wastewater. Wat. Environ. Res. 64, 216-222 https://doi.org/10.2175/WER.64.3.5
  15. Kim, J.S. and J.S. Kim. 1997. Oily wastewater treatment of the metalworking fluid. J. Nakdong Environ. Res. Inst. 2, 13-30
  16. Kim, B.R., N.R. Devi, F.Z. Jerome, L. Frank, and P.V. Harvath. 1994. Biological removal of organic nitrogen and fatty acids from metal cutting fluid wastewater. Wat. Res. 28, 1453-1461 https://doi.org/10.1016/0043-1354(94)90313-1
  17. Li, K., F. Aghazadeh, S. Hatipkarasulu, and T.G. Ray: Health risks from exposure to metal-working fluids in machining and grinding operations. Int. J. Occup. Saf. Ergon. 9, 75-95
  18. Sasser, M. 1990. Identification of bacteria through fatty acid analysis, p. 199-204. In Z. Klement, K. Rudolph, and D.C. Sands (eds.), Methods in phytobacteriology, Akademiai Kiado, Budapest
  19. Sondossi, M., H.W. Rossmoore, and J.W. Wireman. 1985. Observations of resistance and cross-resistance to formaldehyde and a formaldehyde condensate biocide in Pseudomonas aeruginosa. Int. Biodeterior. 21, 105-106
  20. Tant, C.O. and E.O. Bennett. 1958. The growth of aerobic bacteria in metal cutting fluids. Appl. Microbiol. 6, 388-391
  21. Thomas, S.M. 2001. It's a bug's life for MWF disposal. Mater. World 9, 21-23
  22. Van Der Gast, C.J., C.J. Knowles, M.A. Wright, and I.P. Thompson. 2001. Identification and characterisation of bacterial populations of an in-use metal working fluid by phenotypic and genotypic methodology. Int. Biodeter. Biodegrad. 47, 113-123 https://doi.org/10.1016/S0964-8305(01)00036-1
  23. Van Der Gast, C.J., A.S. Whitely, M. Starkey, C.J. Knowles, and I.P. Thompson. 2003. Bioaugmentation strategies for remediating mixed chemical effluents. Biotechnol. Prog. 19, 1156-1161 https://doi.org/10.1021/bp020131z
  24. Van Aken, S.F., J.A. Brown, Jr., W. Young, I. Salmeen, T. McClure, S. Napier, Jr., and R.H. Olsen. 1986. Common components of industrial metal working fluids as sources of carbon for bacterial growth. Appl. Environ. Microbiol. 51, 1165-1169
  25. Van Der Gast, C.J. and I.P. Thompson. 2005. Effects of pH amendment on metal working fluid wastewater biological treatment using a defined bacterial consortium. Biotechnol. Bioeng. 89, 357-366 https://doi.org/10.1002/bit.20351
  26. Viaraghavan, T. and G.N. Mathavan. 1990. Treatment of oily waters using peat. Wat. Poll. Res. J. Can. 25, 73-90