TCP-Friendly Rate Control for Vertical Handover over Wireless Heterogeneous Network

무선 이종망 환경에서 Vertical Handover를 위한 TCP-Friendly 비트율 제어

  • Pyun, Jae-Young (Dept. of information and communication eng., Chosun university)
  • 변재영 (조선대학교 정보통신공학과)
  • Published : 2008.03.25

Abstract

Streaming video has become a popular form of transferring media over the wired/wireless network. TCP-friendly rate control (TFRC) is used as a streaming media transport protocol. Using the TCP congestion response function and current network conditions, TFRC adjusts its sending rate to yield the maximum TCP-friendly throughput. Since TFRC was designed for applications that would prefer to maintain a slowly-changing sending rate, it is less responsive to changes in handover between wireless heterogeneous networks such as 3G network, WLAN, and so on. This paper shows a new TFRC method for vertical handover over wireless heterogeneous network. The proposed TFRC method has features of low quality interruption and fast rate adaptation to a new target network. The simulation results show that the proposed one provides better QoS and throughput support than the traditional TFRC scheme during vertical handover.

스트리밍 미디어는 유/무선망에서 미디어를 전송하기 위해 주로 이용되는 형태이며, TCP-friendly 비트율 제어 (TFRC)는 바로 이러한 스트리밍 미디어를 전송하기 위한 기술이다. TFRC는 TCP 혼잡상태 응답 기능과 현재의 망 상황정보를 이용하여, 최대 TCP-friendly throughput을 갖도록 전송율을 제어한다. 그러나 TFRC는 서서히 변하는 전송율을 생성하는 어플리케이션을 위하여 설계되었기 때문에 3G 망과 WLAN 등으로 이루어진 이종망 환경에서의 handover가 발생할 경우 매우 느린 전송율 반응을 보인다. 본 논문은 무선 이종망에서 vertical handover 경우를 위한 새로운 TFRC를 소개한다. 제안된 TFRC 방법은 새로운 망으로 handover할 경우 빠른 비트율 적응과 낮은 품질 저하현상을 갖는다. 시뮬레이션 결과를 통해 제안하는 방법이 vertical handover 동안에 전통적인 TFRC 방법보다 더 나은 QoS와 처리율을 제공함을 알 수 있다.

Keywords

References

  1. M. Handley, S. Floyd, J. Padhye, and J. Widmer, "TCP friendly rate control (TFRC): protocol specification," RFC 3448, Jan. 2003
  2. J.-Y. Pyun, Y. Kim, K. H. Jang, J. A. Park, and S.-J. Ko, "Wireless measurement based resource allocation for QoS provisioning over IEEE 802.11 wireless LAN," IEEE Trans. Consumer Electronics, vol. 49, no. 3, pp. 614-620, Aug. 2003 https://doi.org/10.1109/TCE.2003.1233784
  3. S. Floyd, M. Handley, J. Padhye, and J. Widmer, "Equation-based congestion control for unicast applications," in Proc. SIGCOMM, 2000
  4. J. Mcnair and F. Zhu, "Vertical Handoffs in Fourth-Generation Multinetwork Environments," IEEE Wireless Commun., pp. 8-15, vol. 11, no. 3, Jun. 2004
  5. A. Gurtov and J. Korhonen, "Effect of Vertical Handovers on Performance of TCP-Friendly Rate Control," ACM SIGMOBILE Mobile Computing and Communications Review, vol.8, no. 3, pp. 73-87, 2004 https://doi.org/10.1145/1031483.1031494
  6. M. Stemm and R. H. Katz, "Vertical Handoffs in Wireless Overlay Networks," ACM Mobile Networks and Applications, vol. 3,no. 4, pp. 335-350, Dec., 1998 https://doi.org/10.1023/A:1019197320544
  7. J. K. Song and W. Wang, "A simulation study of IP-based vertical handoff in wireless convergent networks," Wirel. Commun. Mob. Comput., vol. 6, pp. 629-650, 2006 https://doi.org/10.1002/wcm.415
  8. M. M. Buddhikot, G. Chandranmenon, S. Han, Y. Lee, S. Miller, and L. Salgarelli, "Design and Implementation of a WLAN/CDMA 2000 Interworking Architecture," IEEE Commun. Mag., pp. 90-100, vol. 41, no. 11, Nov. 2003
  9. IEEE P802.21/D05.00, Draft Standard for Local and Metropolitan Area Networks: Media Independent Handover Services, Apr. 2007
  10. H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications," RFC 3550, 2003
  11. Network simulator (ns-2), http://www.isi.edu/nsnam/ns/
  12. J. Rosenberg and H. Schulzrinne, "An RTP Payload Format for Generic Forward Error Correction," RFC 2733, 1999