DOI QR코드

DOI QR Code

Fabrication and Characterization of High Efficiency Green PhOLEDs with [TCTA-TAZ] : Ir(ppy)3 Double Emission Layers

[TCTA-TAZ] : Ir(ppy)3 이중 발광층을 갖는 고효율 녹색 인광소자의 제작과 특성 평가

  • Shin, Sang-Baie (Department of Electronics Engineering, Dankook University) ;
  • Shin, Hyun-Kwan (Department of Electronics Engineering, Dankook University) ;
  • Kim, Won-Ki (Department of Electronics Engineering, Dankook University) ;
  • Jang, Ji-Geun (Department of Electronics Engineering, Dankook University)
  • Published : 2008.04.30

Abstract

High-efficiency phosphorescent organic light emitting diodes using TCTA-TAZ as a double host and $Ir(ppy)_3$ as a dopant were fabricated and their electro-luminescence properties were evaluated. The fabricated devices have the multi-layered organic structure of 2-TNATA/NPB/(TCTA-TAZ) : $Ir(ppy)_3$/BCP/SFC137 between an anode of ITO and a cathode of LiF/AL. In the device structure, 2-TNATA[4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] and NPB[N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] were used as a hole injection layer and a hole transport layer, respectively. BCP [2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline] was introduced as a hole blocking layer and an electron transport layer, respectively. TCTA [4,4',4"-tris(N-carbazolyl)-triphenylamine] and TAZ [3-phenyl-4-(1-naphthyl)-5-phenyl-1,2,4-triazole] were sequentially deposited, forming a double host doped with $Ir(ppy)_3$ in the [TCTA-TAZ] : $Ir(ppy)_3$ region. Among devices with different thickness combinations of TCTA ($50\;{\AA}-200\;{\AA}$) and TAZ ($100\;{\AA}-250\;{\AA}$) within the confines of the total host thickness of $300\;{\AA}$ and an $Ir(ppy)_3$-doping concentration of 7%, the best electroluminescence characteristics were obtained in a device with $100\;{\AA}$-think TCTA and $200\;{\AA}$-thick TAZ. The $Ir(ppy)_3$ concentration in the doping range of 4%-10% in devices with an emissive layer of [TCTA ($100\;{\AA}$)-TAZ ($200\;{\AA}$)] : $Ir(ppy)_3$ gave rise to little difference in the luminance and current efficiency.

Keywords

References

  1. C. W. Tang and S. A. VanSlyke, J. of Appl. Phys. Lett., 51, 913 (1987) https://doi.org/10.1063/1.98799
  2. J. Kido, W. Ikeda, M. Kimura and K. Nagai, Jpn. J. Appl. Phys., 35, L394 (1996) https://doi.org/10.1143/JJAP.35.L394
  3. Z. H. Kafafi, Organic Electroluminescence, p. 274-286, Taylor & Francis, New York, (2005)
  4. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. R. Thomson and S. R. Forrest, Nature, 395, 151 (1998) https://doi.org/10.1038/25954
  5. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. of Appl. Physics, 90, 5048 (2001) https://doi.org/10.1063/1.1409582
  6. S. H. Kim, J. S. Jang, K. S Yook, J. Y. Lee, M. S. Gong, S. Ryu, G. K. Chang and H. J. Chang, J. of Appl. Phys. Lett., 103, 054502 (2008)
  7. T. Zheng and W. C. H. Choy, J. Phys. D: Appl. Phys., 41, 055103 (2008) https://doi.org/10.1088/0022-3727/41/5/055103
  8. M. B. Khalifa, D. Vaufrey and J. Tardy, Organic Electronics, 5, 187 (2004) https://doi.org/10.1016/j.orgel.2003.11.006
  9. J. Sun, X. Zhu, X. Yu, M. Wong and H. S. Kwok, SID 07 DIGEST, 826 (2007)
  10. J. G. Jang, Organic Electronics, p.314, Cheongmoongak, Gyonggi, Korea, (2006)
  11. R. Farchioni and G. Gross, Organic Electronic Materials, p. 428, Springer Series in Materials Science, Berlin, (2001)
  12. M. Toerker, M. Eritt, Ch. May, J. Amelung, C. Luber, R. Hermann, Ch. Zschippang, Y. Tomita and K. Leo, Proc. SID International Symposium, 37(2), 1471 (2006)
  13. K. Goushi, Y. Kawamura, H. Sasabem and C. Adachi, Jpn. J. of. Appl. Phys. Lett., 43, L937 (2004) https://doi.org/10.1143/JJAP.43.L937
  14. B. J. Chen, X.W. Sun and K. R. Sarma, Mat. Sci. Eng. B., 139, 192 (2007) https://doi.org/10.1016/j.mseb.2007.02.007
  15. H. Kajii, Y. Sekimoto, Y. Hino and Y. Ohmori, Thin Solid Films, 516, 2272 (2008) https://doi.org/10.1016/j.tsf.2007.04.113