신생 생쥐 고환에서 기인한 다분화능 생식줄기세포주의 확립 및 특성 분석

Establishment and Characterization of Multipotent Germ Line Stem Cells (MGSCs) from Neonatal Mouse Testis

  • 한상철 (관동대학교 의과대학 제일병원 생식생물학 및 불임연구실) ;
  • 송행석 (관동대학교 의과대학 제일병원 생식생물학 및 불임연구실) ;
  • 전진현 (관동대학교 의과대학 제일병원 생식생물학 및 불임연구실)
  • Han, Sang-Chul (Laboratory of Reproductive Biology and Infertility, Cheil General Hospital & Women's Healthcare Center, Kwandong University College of Medicine) ;
  • Song, Haeng-Seok (Laboratory of Reproductive Biology and Infertility, Cheil General Hospital & Women's Healthcare Center, Kwandong University College of Medicine) ;
  • Jun, Jin-Hyun (Laboratory of Reproductive Biology and Infertility, Cheil General Hospital & Women's Healthcare Center, Kwandong University College of Medicine)
  • 발행 : 2008.03.30

초록

목 적: 본 연구에서는 신생 생쥐 고환으로부터 다분화능 생식줄기세포주 (MGSCs)를 확립하고, 배아체 형성을 통한 삼배엽성 세포로의 분화 가능성을 확인하고자 하였다. 연구방법: 고환에서 유래한 MGSCs를 확립하기 위하여 생후 $2{\sim}3$일된 생쥐 고환 조직으로부터 세포들을 분리하여 1% FBS를 첨가한 생쥐 배아줄기세포주 배양조건에서 배양하였다. MGSCs 콜로니가 형성된 후에는 배양액의 FBS의 농도를 15%로 높였다. 이러한 과정으로 확립된 MGSCs의 미분화 및 분화 특성을 배아줄기세포주와 비교, 분석하였다. 결 과: 신생 생쥐 고환 조직에서 수획한 세포들로 실시한 9번의 배양실험에서 2개의 MGSCs 세포주를 확립하였다. MGSCs 세포주와 생쥐 배아줄기세포 모두에서 미분화 표지인자인 Thy-1, Oct-4, Nanog, Sox2의 발현과 alkaline phosphatase 활성을 관찰할 수 있었으며, MGSCs의 미세구조 또한 생쥐 배아줄기세포와 유사하였다. MGSCs에서 형성된 배아체에서 삼배엽성 표지유전자의 발현을 확인하였다. 결 론: 본 연구의 결과는 배아줄기세포의 윤리적인 문제점을 극복할 수 있는 고환 유래의 다분화능 MGSCs가 생물공학과 재생의학에서 효율적으로 이용될 수 있는 가능성을 보여준 것으로 생각된다.

Objective: The aim of this study was to investigate whether multipotent germline stem cells (MGSCs) can be established from neonatal mouse testis. Methods: Various cells containing MGSCs were collected from neonatal testis of ICR mice and allocated to plates for in vitro culture. After 7 days in culture, the cells were passed to a fresh culture plate and continuously cultured. From the third or fourth passage, the presumed MGSCs were cultured and maintained on mitomycin C-inactivated STO feeder cells. The MGSCs were cultured in a condition where mouse embryonic stem cells (ESCs) are cultured. Characteristics of the MGSCs were evaluated by RT-PCR, immunocytochemistry, alkaline phosphatase activity, karyotyping, and transmission electron microscopy. Results: Two MGSCs lines were established from 9 pooled sets of neonatal testicular cells. MGSCs colonies were morphologically undistinguishable from ESCs colonies and both MGSC lines as well as ESCs expressed undifferentiated stem cell markers, such as Thy-1, Oct-4, Nanog, Sox2 and alkaline phosphatase. Fine structure of undifferentiated MGSCs were similar to those of ESCs and 60% of MGSCs (12/20) had normal karyotype at passage 10. They were able to form embryoid bodies (EBs) and MGSC-derived EBs expressed marker genes of three germ layers. Conclusion: We could establish the MGSCs from neonatal mouse testis and they were differentiated to multipotent lineages of three germ layers. Molecular characteristics of MGSCs were similar to those of ESCs. Our results suggest a possibility that multipotent stem cells derived from testis, the MGSCs, could replace the ESCs in biotechnology and regenerative medicine.

키워드

참고문헌

  1. Evans MJ, Kaufman M. Establishment in culture of pluripotential stem cells from mouse embryos. Nature 1981; 292: 154-6 https://doi.org/10.1038/292154a0
  2. Doetschman TC, Williams P, Maeda N. Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev Biol 1988; 127: 224-7 https://doi.org/10.1016/0012-1606(88)90204-7
  3. Notarianni E, Galli C, Laurie S, Moor RM, Evans MJ. Derivation of pluripotent, embryonic stem cell lines from the pig and sheep. J Reprod Fertil Suppl 1991; 43: 255-60
  4. Wheeler MB. Development and validation of swine embryonic stem cells: a review. Reprod Fertil Dev 1994; 6: 563-8 https://doi.org/10.1071/RD9940563
  5. Sun L, Bradford CS, Ghosh G, Collodi P, Bames DW. ES-like cell cultures derived from early zebrafish embryos. Mol Mar Biol Biotechnol 1995; 4: 193-9
  6. Schoonjans L, Albricht GM, Li JL, Collen D, Moreadith RW. Pluripotent rabbit embryonic stem (ES) cells are capable of forming overt coat color chimeras following injection into blastocysts. Mol Reprod Dev 1996; 46: 439-43
  7. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod 1996; 55: 254-9 https://doi.org/10.1095/biolreprod55.2.254
  8. Vassilieva S, Guan K, Pich U, Wobus AM. Establishment of SSEA-1 and OCT-4-expressing rat embryonic stem like cell lines and effects of cytokines of the IL-6 family on clonal growth. EXP Cell Res 2000; 258: 361-73 https://doi.org/10.1006/excr.2000.4940
  9. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-7 https://doi.org/10.1126/science.282.5391.1145
  10. Lee SH, Lumelsky N, Studer L, Auerbach JM, Mckay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000; 18: 675-9 https://doi.org/10.1038/76536
  11. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000; 28: 31-40 https://doi.org/10.1016/S0896-6273(00)00083-0
  12. Nakayama H, Lee J, Chiu L. Vascular endothelial growth factor synergistically enhances bone morphogenetic protein- 4-dependent lymphohematopoietic cell generation from embryonic stem cells in vitro. Blood 2000; 95: 2275-83
  13. Hirashima M, Kataoka H, Nishikawa S, Matsuyoshi N, Nishikawa S. Maturation of embryonic stem cells into endothelial cells in an in vitro model vasculogenesis. Blood 1999; 93: 1253-63
  14. Yamane T, Hayashi H, Mizoguchi M, Yamazaki H, Kunisada T. Derivation of melanocytes from embryonic stem cells in culture. Dev Dyn 1999; 216: 460-9
  15. Filip S, Mokry J, English D, Vojacek J. Stem cell plasticity and issues of stem cell therapy. Folia Biologica 2005; 51: 180-7
  16. Henningson CT, Stanislaus MA, Gewirtz AM. Embryonic and adult stem cell therapy. J Allergy Clin Immunol 2003; 11: 745-53
  17. Kim JW, Kim SY, Park SY, Kim YM, Kim JM, Lee MH, et al. Mesenchymal progenitor cells in the human umbilical cord. Ann Hematol 2004; 83: 733-8 https://doi.org/10.1007/s00277-004-0918-z
  18. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Doublas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Scinece 1999; 284: 143-7 https://doi.org/10.1126/science.284.5411.143
  19. Shinohara MK, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 2004; 119: 1001-12 https://doi.org/10.1016/j.cell.2004.11.011
  20. Shinohara MT, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, et al. Long-term proliferation in culture and gerline transmission of mouse male germline stem cells. Bio Rep 2003; 69: 612-6 https://doi.org/10.1095/biolreprod.103.017012
  21. Shinohara T, Orwig K, Avarbock M, Brinster R. Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc Natl Acad Sci 2000; 97: 8346-51 https://doi.org/10.1073/pnas.97.15.8346
  22. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, et al. Pluripotent of spermatogonial stem cells from adult mouse testis. Nature 2006; 440: 1199-203 https://doi.org/10.1038/nature04697
  23. Kubota H, Avarbock MR, Brinster RL. Culture condition and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Rep 2004; 71: 722-31 https://doi.org/10.1095/biolreprod.104.029207
  24. Nagano M, Avarbock MR, Leonida EB, Brinster CJ, Brinster RL. Culture of mouse spermatogonial stem cells. Tissue and cells 1998; 30: 389-97 https://doi.org/10.1016/S0040-8166(98)80053-0
  25. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci 2004; 47: 16489-94 https://doi.org/10.1073/pnas.0407063101
  26. Ge RS, Dong Q, Sottas CM, Chen H, Zirkin BR, Hardy MP. Gene expression in rat Leydig cells during development from the progenitor to adult stage: A cluster analysis. Biol Reprod 2005; 72: 1405-15 https://doi.org/10.1095/biolreprod.104.037499
  27. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122: 947-56 https://doi.org/10.1016/j.cell.2005.08.020
  28. Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006; 38: 431-40 https://doi.org/10.1038/ng1760
  29. Seandel M, James D, Shmelkov SV, Falciatori I, Kim JY, Chavala S, et al. Generation of functional multipotent adult stem cells from GPR1251 germline progenitors. Nature 2007; 449: 346-51 https://doi.org/10.1038/nature06129