DOI QR코드

DOI QR Code

Shrinkage Prediction for Small Area Estimations

축소예측을 이용한 소지역 추정

  • Hwang, Hee-Jin (Dept. of Statistics, Hankuk University of Foreign Studies) ;
  • Shin, Key-Il (Dept. of Statistics, Hankuk University of Foreign Studies)
  • 황희진 (한국외국어대학교 통계학과) ;
  • 신기일 (한국외국어대학교 정보통계학과)
  • Published : 2008.02.29

Abstract

Many small area estimation methods have been suggested. Also for the comparison of the estimation methods, model diagnostic checking techniques have been studied. Almost all of the small area estimators were developed by minimizing MSE(Mean square error) and so the MSE is the well-known comparison criterion for superiority. In this paper we suggested a new small area estimator based on minimizing MSPE(Mean square percentage error) which is recently re-highlighted. Also we compared the new suggested estimator with the estimators explained in Shin et al. (2007) using MSE, MSPE and other diagnostic checking criteria.

많은 소지역 추정량이 제안되었으며, 국내외에서 소지역 추정에 관한 많은 연구가 진행되고 있다. 또한 소지역 추정량의 특성과 우수성을 비교하기위한 비교통계량도 연구되고 있다. 기존의 소지역 추정량은 MSE(Mean square error)를 최소화하여 얻어지며, 이에 따라 추정량의 우수성도 MSE를 기준으로 판단하고 있다. 본 논문에서는 최근 새롭게 재조명 되고 있는 MSPE(Mean square percentage error)를 최소화하는 추정량을 제안하였다. 신기일 등 (2007)에서 사용된 비교통계량과 MSE 그리고 MSPB를 이용하여 제안된 추정량과 기존의 소지역 추정량을 비교하였다.

Keywords

References

  1. 김달호, 김남희 (2002) . 반복조사에서 소지역자료의 베이지안분석, 응용통계연구 ,15, 119-128
  2. 신기일, 최봉호, 이상은 (2007) . 공간통계 활용에 따른 소지역 추정법의 평가, 응용통계 연구 , 20, 229-244 https://doi.org/10.5351/KJAS.2007.20.2.229
  3. Fay, R. E. and Herriot, R. A.(1979). Estimates of income from small places: An application of James- Stein procedures to census data, Journal of the American Statistical Association, 74, 269-277 https://doi.org/10.2307/2286322
  4. Kim, J. O. and Shin, K. I. (2006). Comparison of small area estimations by sample sizes, The Korean Communications in Statistics, 13, 669-683 https://doi.org/10.5351/CKSS.2006.13.3.669
  5. Kim, Y. W. and Choi, H. A. (2004). Small area estimation techniques based on logistic model to estimate unemployment rate, The Korean Communications in Statistics, 11, 583-595
  6. Park, H. and Shin, K. I. (2006). A shrinked forecast in stationary process favoring percentage error, Journal of Time Series, 27, 129-139 https://doi.org/10.1111/j.1467-9892.2005.00458.x
  7. Park, H. and Stefanski, L. A. (1997). Relative-error prediction, Statistics & Probability Letters, 40. 227-236 https://doi.org/10.1016/S0167-7152(98)00088-1
  8. Rao, J. N. K. (2003). Small Area Estimation, John Wiley & Son, New York
  9. Shin, K. I. and Lee, S. E. (2003). Model-data based small area estimation, The Korean Communications in Statistics, 10, 637-645

Cited by

  1. Shrinkage Small Area Estimation Using a Semiparametric Mixed Model vol.27, pp.4, 2014, https://doi.org/10.5351/KJAS.2014.27.4.605
  2. Logistic Regression Type Small Area Estimations Based on Relative Error vol.24, pp.3, 2011, https://doi.org/10.5351/KJAS.2011.24.3.445
  3. Relative Error Prediction via Penalized Regression vol.28, pp.6, 2015, https://doi.org/10.5351/KJAS.2015.28.6.1103