DOI QR코드

DOI QR Code

소규모 경시적 마이크로어레이 실험의 통계적 분석

Statistical Analysis of a Small Scale Time-Course Microarray Experiment

  • 이근영 (연세대학교 응용통계학과) ;
  • 양상화 (연세대학교 의과대학 암전이 연구소) ;
  • 김병수 (연세대학교 응용통계학과)
  • Lee, Keun-Young (Dept. of Applied Statistics, Yonsei University) ;
  • Yang, Sang-Hwa (Cancer Metastasis Research Center, College of Medicine, Yonsei University) ;
  • Kim, Byung-Soo (Dept. of Applied Statistics, Yonsei University)
  • 발행 : 2008.02.29

초록

소규모 경시적 마이크로어레이 실험이란 시점의 개수가 적은 경시적 마이크로어레이 실험으로서 현재까지 보고된 경시적 마이크로어레이 실험의 약 80%를 차지한다. 최근 들어 소규모 경시적 마이크로어레이 실험을 대상으로 하는 통계적 분석 방법이 몇 가지 제안되었다. 최근에 제안된 세 가지 방법들을 실제 소규모 경시적 마이크로어레이 실험자료에 적용하여 분석하고 모의실험 자료를 생성하여 각 방법들의 검정력과 위양성율을 비교해 보았다. 그 결과 낮은 위양성율을 보이는 STEM방법이 다른 방법에 비해서 우위에 있음이 드러났다.

Small scale time-course microarray experiments are those which have a small number of time points. They comprise about 80 percent of all time-course microarray experiments conducted up to 2005. Several statistical methods for the small scale time-course microarray experiments have been proposed. In this paper we applied three methods, namely, QR method, maSigPro method and STEM, to a real time-course microarray experiment which had six time points. We compared the performance of these three methods based on a simulation study and concluded that STEM outperformed, in general, in terms of power when the FDR was set to be 5%.

키워드

참고문헌

  1. Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing, Journal of the Royal Statistical Society, Ser. B, 57, 289-300
  2. Conesa, A., Nueda, M. J., Ferrer, A. and Talon, M. (2006). maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments, Bioinformatics, 22, 1096-1102 https://doi.org/10.1093/bioinformatics/btl056
  3. Draghici, S., Khatri, P., Martins, R. P., Ostermeier, G. C. and Krawetz, S. A. (2003). Global functional profiling of gene expression, Genomics, 81, 98-104 https://doi.org/10.1016/S0888-7543(02)00021-6
  4. Ernst, J., Nau, G. J. and Bar-Joseph, Z. (2005). Clustering short time series gene expression data, Bioinformatics, 21, i159-i168 https://doi.org/10.1093/bioinformatics/bti1022
  5. Liu, H., Tarima, S., Borders, A. S., Getchell, T. V., Getchell, M. L. and Stromberg, A. J. (2005). Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments, BMC Bioinformatics, 6, 106 https://doi.org/10.1186/1471-2105-6-106
  6. Park, M., Yong, Y., Choi, S. W., Kim, J. H., Lee, J. E. and Kim, D. W. (2007). Constitutive RelA activation mediated by Nkx3.2 controls chondrocyte viability, Nature Cell Biology, 9, 287-298 https://doi.org/10.1038/ncb1538
  7. Peddada, S. D., Lobenhofer, E. K., Li, L., Afshari, C. A., Weinberg, C. R. and Umbach, D. M. (2003). Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference, Bioinformatics, 19, 834-841 https://doi.org/10.1093/bioinformatics/btg093
  8. Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J. and Speed, T. P. (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation, Nucleic Acids Research, 30, e15 https://doi.org/10.1093/nar/30.4.e15