DOI QR코드

DOI QR Code

Model-Based Prediction of the Population Proportion and Distribution Function Using a Logistic Regression

  • Published : 2008.09.30

Abstract

Estimation procedure of the finite population proportion and distribution function is considered. Based on a logistic regression model, an approximately model- optimal estimator is defined and conditions for the estimator to be design-consistent are given. Simulation study shows that the model-optimal design-consistent estimator defined under a logistic regression model performs well in estimating the finite population distribution function.

Keywords

References

  1. Chambers, R. L., Dorfman, A. H. and Hall, P. (1992). Properties of estimators of finite population distribution function, Biometrika, 79, 577-582 https://doi.org/10.1093/biomet/79.3.577
  2. Chambers, R. L. and Dunstan, R. (1986). Estimating distribution functions from survey data, Biometrika, 73, 597-604 https://doi.org/10.1093/biomet/73.3.597
  3. Fuller, W. A. (2008). Sampling Statistics, Iowa State University, Ames, IA.
  4. Gallant, A. R. (1987). Nonlinear Statistical Models, John Wiley & Sons, New York
  5. Harms, T. and Duchesne, P. (2006). On calibration estimation for quantiles, Survey methodology, 32, 37-52
  6. Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe, Journal of the American Statistical Association, 47, 663-685 https://doi.org/10.2307/2280784
  7. Isaki, C. T. and Fuller, W. A. (1982). Survey design under the regression superpopulation model, Journal of the American Statistical Association, 77, 89-96 https://doi.org/10.2307/2287773
  8. Park, M. and Yang, M. (2008). Ridge regression estimation for survey samples, Communications in Statistics - Theory and Method, 37, 532-543 https://doi.org/10.1080/03610920701669694
  9. Rao, J. N. K., Kovar, J. G. and Mantel, H. J. (1990). On estimating distribution functions and quantiles from survey data using auxiliary information, Biometrika, 77, 365-375 https://doi.org/10.1093/biomet/77.2.365
  10. Sarndal, C. E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling, Springer-Verlag, New York
  11. Valliant, R., Dorfman, A. H. and Royall, R. M. (2000). Finite Population Sampling and Inference: A Prediction Approach, John Wiley & Sons, New York
  12. Wu, C. and Sitter, R. R. (2001). A model-calibration approach to using complete auxiliary information from survey data, Journal of the American Statistical Association, 96, 185-193 https://doi.org/10.1198/016214501750333054