DOI QR코드

DOI QR Code

Enhanced Production of 1,2-Propanediol by tpil Deletion in Saccharomyces cerevisiae

  • Jung, Joon-Young (Department of Chemical and Biological Engineering, Korea University) ;
  • Choi, Eun-Sil (Department of Chemical and Biological Engineering, Korea University) ;
  • Oh, Min-Kyu (Department of Chemical and Biological Engineering, Korea University)
  • Published : 2008.11.30

Abstract

Saccharomyces cerevisiae was metabolically engineered to improve 1,2-propanediol production. Deletion of the tpil (triosephosphate isomerase) gene in S. cerevisiae increased the carbon flux to DHAP (dihydroxylacetone phosphate) in glycolysis, resulting in increased glycerol production. Then, the mgs and gldA genes, the products of which convert DHAP to l,2-propanediol, were introduced to the tpil-deficient strain using a multicopy plasmid. As expected, the intracellular level of methylglyoxal was increased by introduction of the mgs gene in S. cerevisiae and that of 1,2-propanediol by introduction of both the mgs and gldA genes. As a result, 1.11 g/l of 1,2-propanediol was achieved in flask culture.

Keywords

References

  1. http://www.the-innovation-group.com/ChemProfiles/Propylene%20Glycol.htm
  2. Altaras, N. E. and D. C. Cameron. 1999. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. 65: 1180-1185
  3. Altaras, N. E. and D. C. Cameron. 2000. Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol. Prog. 16: 940-946 https://doi.org/10.1021/bp000076z
  4. Amberg, D. C., D. Burke, and J. N. Strathern (eds.). 2005. Isolation and characterization of auxotrophic, temperature-sensitive, and osmotic-sensitive mutants, pp. 11-19. In: Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, New York. U.S.A
  5. Badia, J., J. Ros, and J. Aguilar. 1985. Fermentation mechanism of fucose and rhamnose in Salmonella typhimurium and Klebsiella pneumoniae. J. Bacteriol. 161: 435-437
  6. Bennett, G. N. and K. Y. San. 2001. Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl. Microbiol. Biotechnol. 55: 1-9 https://doi.org/10.1007/s002530000476
  7. Cameron, D. C. and C. L. Cooney. 1986. A novel fermentation: The production of R(-)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum. Bio/Technology 4: 651-654 https://doi.org/10.1038/nbt0786-651
  8. Cameron, D. C., N. E. Altaras, M. L. Hoffman, and A. J. Shaw. 1998. Metabolic engineering of propanediol pathways. Biotechnol. Prog. 14: 116-125 https://doi.org/10.1021/bp9701325
  9. Compagno, C., F. Boschi, and B. M. Ranzi. 1996. Glycerol production in a triose phosphate isomerase deficient mutant of Saccharomyces cerevisiae. Biotechnol. Prog. 12: 591-595 https://doi.org/10.1021/bp960043c
  10. Frosberg, C. D. and L. N. Gibbins. 1987. Metabolism of rhamnose and other sugars by strains of Clostridium acetobutylicum and other Clostridium species. Can. J. Microbiol. 33: 21-26 https://doi.org/10.1139/m87-004
  11. Gonzalez, B., J. Francois, and M. Renaud. 1997. A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13: 1347-1355 https://doi.org/10.1002/(SICI)1097-0061(199711)13:14<1347::AID-YEA176>3.0.CO;2-O
  12. Huang, K., F. B. Rudolph, and G.. N. Bennett. 1999. Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1,2- propanediol. Appl. Environ. Microbiol. 65: 3244-3247
  13. Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168
  14. Kim, J. C., S. W. Kang, J. S. Lim, Y. S. Song, and S. W. Kim. 2006. Stimulation of cephalosporin C production by Acremonium chrysogenum M35 with fatty acids. J. Microbiol. Biotechnol. 16: 1120-1224
  15. Lee, J. H., J. S. Lim, Y. S. Song, S. W. Kang, C. Park, and S. W. Kim. 2007. Optimization of culture medium for lactosucrose ((4)Gbeta- D-galactosylsucrose) production by Sterigmatomyces elviae mutant using statistical analysis. J. Microbiol. Biotechnol. 17: 1996-2004
  16. Lee, W. and N. A. DaSilva. 2006. Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metab. Eng. 8: 58-65 https://doi.org/10.1016/j.ymben.2005.09.001
  17. Lee, T. H., M. D. Kim, and J. H. Seo. 2006. Development of reusable split URA3-marked knockout vectors for Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 16: 979-982
  18. Lin, E. C. C. 1996. Dissimilatory pathway for sugars, polyols, and carboxylates, pp. 307-342. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Wshington, DC, U.S.A
  19. Sutherland, F. C., F. Lages, C. Lucas, K. Luyten, J. Albertyn, S. Hohmann, B. A. Prior, and S. G. Kilian. 1997. Characteristics of Fps1-dependent and -independent glycerol transport in Saccharomyces cerevisiae. J. Bacteriol. 179: 7790-7795 https://doi.org/10.1128/jb.179.24.7790-7795.1997

Cited by

  1. Production of 1,2-Propanediol from Glycerol in Saccharomyces cerevisiae vol.21, pp.8, 2008, https://doi.org/10.4014/jmb.1103.03009
  2. Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum vol.90, pp.5, 2008, https://doi.org/10.1007/s00253-011-3190-x
  3. Metabolic engineering of Escherichia coli for enhanced biosynthesis of poly(3-hydroxybutyrate) based on proteome analysis vol.35, pp.10, 2008, https://doi.org/10.1007/s10529-013-1246-y
  4. Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells vol.114, pp.3, 2008, https://doi.org/10.1021/cr400309c
  5. Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio‐basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten vol.127, pp.11, 2008, https://doi.org/10.1002/ange.201409033
  6. Advanced Biotechnology: Metabolically Engineered Cells for the Bio‐Based Production of Chemicals and Fuels, Materials, and Health‐Care Products vol.54, pp.11, 2008, https://doi.org/10.1002/anie.201409033
  7. Synthesis of chemicals by metabolic engineering of microbes vol.44, pp.11, 2008, https://doi.org/10.1039/c5cs00159e
  8. Designing a New Entry Point into Isoprenoid Metabolism by Exploiting Fructose-6-Phosphate Aldolase Side Reactivity of Escherichia coli vol.6, pp.7, 2008, https://doi.org/10.1021/acssynbio.7b00072
  9. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery vol.102, pp.9, 2008, https://doi.org/10.1007/s00253-018-8896-6
  10. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals vol.118, pp.1, 2008, https://doi.org/10.1021/acs.chemrev.6b00804
  11. Combination of Three Methods to Reduce Glucose Metabolic Rate For Improving N-Acetylglucosamine Production in Saccharomyces cerevisiae vol.66, pp.50, 2008, https://doi.org/10.1021/acs.jafc.8b04291