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LOCALLY CONVEX VECTOR TOPOLOGIES ON B(X, Y )

Changsun Choi and Ju Myung Kim

Abstract. In this paper, we introduce and study various locally convex
vector topologies on the space of bounded linear operators between Ba-

nach spaces. We also apply these topologies to approximation properties.

1. Introduction and notations

In the study of operators in B(X,Y ), the space of bounded linear opera-
tors from a Banach space X into another Banach space Y , vector topologies
on B(X,Y ) have provided us with a tool of great importance. For instance,
Grothendieck [6] used the τ -topology in order to give the modern definition of
the approximation property, thereby obtaining fruitful results in approxima-
tion properties. Later Kalton [7] introduced the dual weak operator topology
which led him to a characterization of weak compactness of sets of compact
operators. The main purpose of this paper is to study fundamental properties
of locally convex vector topologies on B(X,Y ) that are in general weaker than
the operator norm topology. The main topics of our study are metrizability,
completeness, and compactness of these vector topologies. We also introduce
several approximation properties to which we apply our study of vector topolo-
gies.

In Section 2, we study topologies induced by spaces of linear functionals on
B(X,Y ). In Section 3, we study topologies generated by subbases on B(X,Y ).
In Section 4, simple characterizations of Banach spaces having approximation
properties are established.

We now start by listing notations which are used throughout this paper.
Notation

• X, Y : Banach spaces.
• X∗ : The dual space of X.
• T ∗ : The adjoint of an operator T .
• B(X,Y ) : The space of bounded linear operators from X into Y .
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• F(X,Y ) : The space of bounded and finite rank linear operators from
X into Y .

• K(X,Y ) : The space of compact operators from X into Y .
• K∗(X,Y ) : The space of compact adjoint operators from Y ∗ into X∗.
• K(X,Y, λ) : The collection of compact operators T from X into Y

satisfying ∥T∥ ≤ λ.
• K∗(X,Y, λ) : The collection of compact adjoint operators T ∗ from Y ∗

into X∗ satisfying ∥T ∗∥ ≤ λ.

We similarly define F∗(X,Y ), F(X,Y, λ), F∗(X,Y, λ), B∗(X,Y ), B(X,Y, λ),
and B∗(X,Y, λ). For convenience we denote B(X,X), . . . by B(X), . . ..

2. Topologies induced by subspaces of B(X, Y )♯

Suppose that Z is a subspace of B(X,Y )♯, the vector space of all linear func-
tionals on B(X,Y ). Then the topology induced by Z is the smallest topology
on B(X,Y ) such that every member of Z is continuous. In this section we
study topologies induced by subspaces of B(X,Y )♯. The following are elemen-
tary facts about these topologies. One may refer to Megginson [12, Section 2.4]
for rigorous proofs.

Remark 2.1. Suppose that Z is a subspace of B(X,Y )♯ and T is the topology
induced by Z.

(a) Let a net (Tα) and T be in B(X,Y ). Then

Tα
T−→ T if and only if φ(Tα) −→ φ(T ) for each φ ∈ Z.

(b) T is a locally convex vector topology and the dual space of B(X,Y )
with respect to T is Z. If Z is separating, then T is completely regular.

(c) The elements of a basis for T are of the form

N(T ;A, ϵ) = {R ∈ B(X,Y ) : |φ(R − T )| < ϵ for each φ ∈ A},

where T ∈ B(X,Y ), A is a finite set in Z, and ϵ > 0.

We now introduce topologies induced by some subspaces of B(X,Y )♯. First
we review the weak and weak∗ topologies.

The weak topology (in short, weak) on B(X,Y ) is the topology induced by
B(X,Y )∗, the dual space of B(X,Y ) with respect to the operator norm topology
on B(X,Y ). Remark 2.1 yields that for a net (Tα) and T in B(X,Y )

Tα
weak−→ T if and only if φ(Tα) −→ φ(T ) for each φ ∈ B(X,Y )∗

and that (B(X,Y ),weak)∗ = B(X,Y )∗.
The weak∗ topology (in short, weak∗) on B(X,Y ∗) = (X⊗̂πY )∗ (see Ryan

[13, p. 24]) is the topology induced by X⊗̂πY , the projective tensor product
of X and Y , and if φ =

∑
n xn ⊗ yn ∈ X⊗̂πY and so

∑
n ∥xn∥∥yn∥ < ∞, then
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φ(T ) =
∑

n(Txn)yn for T ∈ B(X,Y ∗). Remark 2.1 yields that for a net (Tα)
and T in B(X,Y ∗)

Tα
weak∗−→ T if and only if

∑
n

(Tαxn)yn −→
∑

n

(Txn)yn

for each (xn) ⊂ X and (yn) ⊂ Y with
∑

n ∥xn∥∥yn∥ < ∞ and that

(B(X,Y ∗),weak∗)∗ = X⊗̂πY.

Definition 2.2. Let Z1 be the linear span of all linear functionals φ on
B(X,Y ∗) of the form

φ(T ) = (Tx)y

for x ∈ X and y ∈ Y .
Let Z2 be the linear span of all linear functionals φ on B(X,Y ) of the form

φ(T ) = y∗(Tx)

for x ∈ X and y∗ ∈ Y ∗.
Let Z3 be the linear span of all linear functionals φ on B(X,Y ) of the form

φ(T ) =
∑

n

y∗
n(Txn)

for (xn) ⊂ X and (y∗
n) ⊂ Y ∗ with

∑
n ∥xn∥∥y∗

n∥ < ∞.
Let Z4 be the linear span of all linear functionals φ on B(X,Y ) of the form

φ(T ) = x∗∗(T ∗y∗)

for x∗∗ ∈ X∗∗ and y∗ ∈ Y ∗.
Let Z5 be the linear span of all linear functionals φ on B(X,Y ) of the form

φ(T ) =
∑

n

x∗∗
n (T ∗y∗

n)

for (x∗∗
n ) ⊂ X∗∗ and (y∗

n) ⊂ Y ∗ with
∑

n ∥y∗
n∥∥x∗∗

n ∥ < ∞.
Then the weak∗ operator topology (in short, weak∗o) on B(X,Y ∗) is the

topology induced by Z1, the weak operator topology (in short, wo) on B(X,Y )
is the topology induced by Z2, the summable weak operator topology (in short,
swo) on B(X,Y ) is the topology induced by Z3, the weak adjoint operator
topology (in short, wao) on B(X,Y ) is the topology induced by Z4, and the
summable weak adjoint operator topology (in short, swao) on B(X,Y ) is the
topology induced by Z5.

From Remark 2.1(a) we see the following: for a net (Tα) and T in B(X,Y ∗)

Tα
weak∗o−→ T if and only if (Tαx)y −→ (Tx)y for each x ∈ X and y ∈ Y.

For a net (Tα) and T in B(X,Y )

Tα
wo−→ T if and only if y∗(Tαx) −→ y∗(Tx)
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for each x ∈ X and y∗ ∈ Y ∗;

Tα
swo−→ T if and only if

∑
n

y∗
n(Tαxn) −→

∑
n

y∗
n(Txn)

for each (xn) ⊂ X and (y∗
n) ⊂ Y ∗ with

∑
n ∥xn∥∥y∗

n∥ < ∞;

Tα
wao−→ T if and only if x∗∗(T ∗

αy∗) −→ x∗∗(T ∗y∗)

for each x∗∗ ∈ X∗∗ and y∗ ∈ Y ∗; and

Tα
swao−→ T if and only if

∑
n

x∗∗
n (T ∗

αy∗
n) −→

∑
n

x∗∗
n (T ∗y∗

n)

for each (x∗∗
n ) ⊂ X∗∗ and (y∗

n) ⊂ Y ∗ with
∑

n ∥y∗
n∥∥x∗∗

n ∥ < ∞.
Now it is easy to check the following relations between the above topologies.

Here for two topologies T1 and T2, T1 ≥ T2 means that T1 is stronger than T2.
One may refer to the diagram in Section 3 for the relationship between our
topologies.

Proposition 2.3. (a) On B(X,Y ), weak ≥ swao ≥ swo, swao ≥ wao,
swo ≥ wo, wao ≥ wo. On B(X,Y ∗), weak ≥ swao ≥ swo ≥ weak∗,
weak∗ ≥ weak∗o, wao ≥ wo ≥ weak∗o.

(b) On each bounded set in B(X,Y ) swao = wao ≥ swo = wo. On each
bounded set in B(X,Y ∗) swao = wao ≥ swo = wo ≥ weak∗ = weak∗o.

(c) If X is reflexive, then on B(X,Y ) swao = swo ≥ wao = wo. Hence,
if X is reflexive, then on each bounded set in B(X,Y ) swao = swo =
wao = wo.
If Y is reflexive, then on B(X,Y ∗) swo = weak∗ ≥ wo = weak∗o.
Hence, if X and Y are reflexive, then on B(X,Y ∗) swao = swo =
weak∗ ≥ wao = wo = weak∗o.

Consequently, if X and Y are reflexive, then on each bounded set in B(X,Y ∗)
swao = swo = weak∗ = wao = wo = weak∗o.

The definition of boundedness with respect to a metric topology can be
extended to vector topologies not induced by metrics. We say that a set B in
a topological vector space is bounded with respect to the topology if, for each
neighborhood U of 0, there is a sU > 0 such that B ⊂ tU whenever t > sU .
Therefore, for a vector space V having two vector topologies T1 and T2 with
T1 ≥ T2, if a set B in V is bounded with respect to T1, then B is bounded with
respect to T2.

If a topological vector space has a topology induced by a subspace of the
vector space of all linear functionals on the vector space, then the following
lemma gives a way to check the boundedness with respect to the topology.

Lemma 2.4 ([12, Proposition 2.4.14]). If B is a set in a vector space equipped
with a topology induced by a subspace Z of the vector space of all linear func-
tionals on the vector space, then B is bounded with respect to the topology if
and only if supx∈B |f(x)| is finite for each f ∈ Z.
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Now let’s consider boundedness with respect to our vector topologies. First,
we have the following proposition. Here, in (a), the ‘bounded’ means the ‘op-
erator norm bounded’.

Proposition 2.5. Let A be a set in B(X,Y ). Then the following are equivalent.
(a) A is bounded.
(b) A is weak-bounded.
(c) A is swao-bounded.
(d) A is swo-bounded.
(e) A is wao-bounded.
(f) A is wo-bounded.

Proof. See Figure 1, in Section 3. Then it is enough to show (f)=⇒(a). The
proof is a review of the proof of Kim [8, Proposition 2.1]. Now assume (f). Let
x ∈ X and consider {QY (Tx) : T ∈ A}, where QY is the natural map from Y
into Y ∗∗. Since A is wo-bounded, by Lemma 2.4 for each y∗ ∈ Y ∗

sup
T∈A

|QY (Tx)y∗| = sup
T∈A

|y∗Tx| < ∞.

By Uniform Boundedness Principle

sup
T∈A

∥Tx∥ = sup
T∈A

∥QY (Tx)∥ < ∞.

Again, by Uniform Boundedness Principle

sup
T∈A

∥T∥ < ∞.

Hence A is bounded. ¤

By a similar proof we have the following proposition.

Proposition 2.6. Let A be a set in B(X,Y ∗). Then the following are equiva-
lent.

(a) A is bounded.
(b) A is weak-bounded.
(c) A is swao-bounded.
(d) A is swo-bounded.
(e) A is weak∗-bounded.
(f) A is wao-bounded.
(g) A is wo-bounded.
(h) A is weak∗o-bounded.

If a vector topology is induced by a metric, then the topology has useful
properties. But a vector topology is seldom metrizable. In fact, it is well
known that the weak topology of a normed space is metrizable if and only if
the space is finite-dimensional, and the weak∗ topology of the dual space of a
Banach space X is metrizable if and only if X is finite-dimensional. Therefore
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the weak topology on B(X,Y ) is metrizable if and only if X and Y are finite-
dimensional, and the weak∗ topology on B(X,Y ∗) is metrizable if and only if X
and Y are finite-dimensional; here and throughout the paper, we are assuming
that X ̸= {0} and Y ̸= {0}. We now have the following theorem.

Theorem 2.7. (a) The swao (respectively, swo, wao, and wo) topology on
B(X,Y ) is metrizable if and only if X and Y are finite-dimensional.

(b) The weak∗o topology on B(X,Y ∗) is metrizable if and only if X and Y
are finite-dimensional.

Proof. The ‘if’ parts of the theorem are clear and we only show the ‘only if’ part
for the wo topology; the proofs of the other cases are the same. Now assume
that the wo topology is induced by a metric d, and to obtain a contradiction,
suppose that X or Y is infinite-dimensional. Then the space of linear function-
als on B(X,Y ) inducing the wo is infinite-dimensional. Thus every wo-open
set is wo-unbounded (see [12, Proposition 2.4.15]), hence it is unbounded. Let
Bd(0; 1/n) be the d-open ball with the center 0 and radius 1/n. Then for each
n, there is a Tn ∈ Bd(0; 1/n) such that ∥Tn∥ ≥ n. Thus Tn

wo−→ 0 and (Tn) is
an unbounded sequence. This is a contradiction because a convergent sequence
in a topological vector space is bounded with respect to the topology and so is
bounded by Proposition 2.5. Hence X and Y are finite-dimensional. ¤

Bounded sets in normed spaces supply good situations for vector topologies
on the spaces. In [8], the author showed the following theorem for the case of
wao and wo topologies on B(X). Recall swao = wao and swo = wo on each
bounded set in B(X,Y ), and weak∗ = weak∗o on each bounded set in B(X,Y ∗).
The proof of Theorem 2.8 is essentially the same as the proof in [8]. So we omit
it.

Theorem 2.8. (a) Suppose that X∗∗ and Y ∗ are separable. Then the
swao(wao) topology on each bounded set in B(X,Y ) has a countable
basis and is metrizable. Also B(X,Y ) is swao(wao)-separable.

(b) Suppose that X and Y ∗ are separable. Then the swo(wo) topology on
each bounded set in B(X,Y ) has a countable basis and is metrizable.
Also B(X,Y ) is swo(wo)-separable.

(c) Suppose that X and Y are separable. Then the weak∗(weak∗o) topology
on each bounded set in B(X,Y ∗) has a countable basis and is metrizable.
Also B(X,Y ∗) is weak∗(weak∗o)-separable.

Next, we consider the completeness of B(X,Y ) and B(X,Y ∗). Of course,
these spaces are complete with respect to the operator norm topology. We
say that a net (xα) in a topological vector space X with a vector topology T
is Cauchy (with respect to T ) if, for every basic neighborhood U of 0 in T ,
there is an αU such that β, γ ≽ αU implies xβ − xγ ∈ U . Also we say that
a topological vector space (X, T ) is complete, or T -complete if every Cauchy
net in the space X converges. It is well known that the weak topology on a
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normed space X is complete if and only if X is finite-dimensional, and the weak∗

topology on the dual space of a normed space X is complete if and only if X is
finite-dimensional. Therefore the weak topology on B(X,Y ) is complete if and
only if X and Y are finite-dimensional, and the weak∗ topology on B(X,Y ∗) is
complete if and only if X and Y are finite-dimensional. Now for the wo, wao,
and weak∗o topology, we have the following results.

Theorem 2.9. (a) The wo (respectively, wao) topology on B(X,Y ) is com-
plete if and only if X and Y are finite-dimensional.

(b) The weak∗o topology on B(X,Y ∗) is complete if and only if X and Y
are finite-dimensional.

Proof. Since the “if” parts are clear, we only consider the “only if” parts.
(a) Suppose that the wo topology on B(X,Y ) is complete. To show that X

is finite-dimensional, we show that X∗ is w∗-complete, where w∗ is the weak∗

topology on X∗. For this let (x∗
α) be a w∗-Cauchy net in X∗. Choose y0 ∈ Y

and y∗
0 ∈ Y ∗ so that 1 = ∥y0∥ = ∥y∗

0∥ = y∗
0y0. Now define a net (Tα) in B(X,Y )

by
Tαx = (x∗

αx)y0.

Since (x∗
α) is w∗-Cauchy and

y∗(Tα − Tβ)x = (x∗
α − x∗

β)(y∗y0)x

for each x ∈ X and y∗ ∈ Y ∗, it follows that (Tα) is wo-Cauchy. By the
assumption, there is a T ∈ B(X,Y ) such that Tα

wo−→ T . Consider y∗
0T ∈ X∗.

Then for each x ∈ X, we have

x∗
αx = y∗

0Tαx −→ y∗
0Tx.

Hence x∗
α

w∗

−→ y∗
0T . This finishes the proof that X∗ is w∗-complete.

To show that Y is finite-dimensional, we show that Y is w-complete, where
w is the weak topology on Y . For this let (yα) be a w-Cauchy net in Y . Choose
x0 ∈ X and x∗

0 ∈ X∗ so that 1 = ∥x0∥ = ∥x∗
0∥ = x∗

0x0. Now define a net (Tα)
in B(X,Y ) by

Tαx = (x∗
0x)yα.

Similarly we can check that (Tα) is wo-Cauchy. By the assumption, there is a
T ∈ B(X,Y ) such that Tα

wo−→ T . Then, similarly as above, we can check that
yα

w−→ Tx0.
Now suppose that the wao topology on B(X,Y ) is complete. To show that X

is finite-dimensional, we show that X∗ is w-complete. For this let (x∗
α) be a w-

Cauchy net in X∗. Choose y0 ∈ Y and y∗
0 ∈ Y ∗ so that 1 = ∥y0∥ = ∥y∗

0∥ = y∗
0y0.

Now define a net (Tα) in B(X,Y ) by

Tαx = (x∗
αx)y0.

Since (x∗
α) is w-Cauchy and

x∗∗(Tα − Tβ)∗y∗ = (y∗y0)x∗∗(x∗
α − x∗

β)
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for each y∗ ∈ Y ∗ and x∗∗ ∈ X∗, it follows that (Tα) is wao-Cauchy. By the
assumption, there is a T ∈ B(X,Y ) such that Tα

wao−→ T . Consider T ∗y∗
0 ∈ X∗.

Then for each x∗∗ ∈ X∗∗, we have

x∗∗x∗
α = x∗∗T ∗

αy∗
0 −→ x∗∗T ∗y∗

0 .

Hence x∗
α

w−→ T ∗y∗
0 . This proves that X∗ is w-complete.

To show that Y is finite-dimensional, we show that Y is w-complete. For
this let (yα) be a w-Cauchy net in Y . Choose x0 ∈ X and x∗

0 ∈ X∗ so that
1 = ∥x0∥ = ∥x∗

0∥ = x∗
0x0. Now define a net (Tα) in B(X,Y ) by

Tαx = x∗
0(x)yα.

Similarly we can check that (Tα) is wao-Cauchy. By the assumption, there is
a T ∈ B(X,Y ) such that Tα

wao−→ T . Consider Tx0 ∈ Y . Then for each y∗ ∈ Y ,
we have

y∗yα = y∗Tαx0 = QX(x0)(T ∗
αy∗) −→ QX(x0)(T ∗y∗) = y∗Tx0,

where QX is the natural map from X into X∗∗. Hence yα
w−→ Tx0. This

proves that Y is w-complete.
(b) Suppose that the weak∗o topology on B(X,Y ∗) is complete. To show

that X is finite-dimensional, we show that X∗ is w∗-complete. For this let (x∗
α)

be a w∗-Cauchy net in X∗. Choose y0 ∈ Y and y∗
0 ∈ Y ∗ so that 1 = ∥y0∥ =

∥y∗
0∥ = y∗

0y0. Now define a net (Tα) in B(X,Y ∗) by

Tαx = (x∗
αx)y∗

0 .

Since (x∗
α) is w∗-Cauchy and

((Tα − Tβ)x)y = (x∗
α − x∗

β)(y∗
0y)x

for each x ∈ X and y ∈ Y , it follows that (Tα) is weak∗o-Cauchy. By

the assumption, there is a T ∈ B(X,Y ∗) such that Tα
weak∗o−→ T . Consider

QY (y0)T ∈ X∗, where QY is the natural map from Y into Y ∗∗. Then for each
x ∈ X, we have

x∗
αx = (Tαx)y0 −→ (Tx)y0 = (QY (y0)T )x.

Hence x∗
α

w∗

−→ QY (y0)T . This proves that X∗ is w∗-complete.
To show that Y is finite-dimensional, we show that Y ∗ is w∗-complete. For

this let (y∗
α) be a w∗-Cauchy net in Y ∗. Choose x0 ∈ X and x∗

0 ∈ X∗ so that
1 = ∥x0∥ = ∥x∗

0∥ = x∗
0x0. Now define a net (Tα) in B(X,Y ∗) by

Tαx = (x∗
0x)y∗

α.

Similarly we can check that (Tα) is weak∗o-Cauchy. By the assumption, there

is a T ∈ B(X,Y ∗) such that Tα
weak∗o−→ T . Then we can similarly check that

y∗
α

w∗

−→ Tx0. ¤
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Now we are concerned with the compactness in B(X,Y ). In topological vec-
tor spaces, every compact set is bounded with respect to the topology. Recall
Propositions 2.3, 2.5, and 2.6. Then we see the following.

Remark 2.10. (a) Suppose that A is a set in B(X,Y ). Then A is swao-compact
if and only if A is wao-compact, and A is swo-compact if and only if A is wo-
compact.

(b) Suppose that A is a set in B(X,Y ∗). Then A is weak∗-compact if and only
if A is weak∗o-compact. Thus by the virtue of the Banach-Alaoglu theorem,
every bounded set in B(X,Y ∗) is relatively weak∗o-compact.

Suppose that A is a set in B(X,Y ) and x ∈ X. Then we use the following
notations:

A∗ = {T ∗ : T ∈ A}, Ax = {Tx : T ∈ A}.
Notice that for a net (Tα) and T in B(X,Y ),

Tα
wao−→ T if and only if T ∗

α
wo−→ T ∗ in B(Y ∗, X∗),

(2.1) Tα
swao−→ T if and only if T ∗

α
swo−→ T ∗ in B(Y ∗, X∗).

Now we give characterizations of wao and wo-compactness. Some parts of
Proposition 2.11 and Theorem 2.13 are well known (cf. [4, Exercises VI.9.2 and
VI.9.3]).

Proposition 2.11. Suppose that A is a set in B(X,Y ).
(a) The following are equivalent.

(i) A is wo(swo)-compact.
(ii) A is wo-closed and for each x ∈ X, Ax is w-compact in Y , where

w is the weak topology on Y .
(iii) A is wo-closed and for each x ∈ X, Ax

w
is w-compact in Y .

(b) The following are equivalent.
(i) A is wao(swao)-compact.

(ii) A∗ is wo-closed in B(Y ∗, X∗) and for each y∗ ∈ Y ∗, A∗y∗ is w-
compact in X∗, where w is the weak topology on X∗.

(iii) A∗ is wo-closed in B(Y ∗, X∗) and for each y∗ ∈ Y ∗, A∗y∗w
is

w-compact in X∗.

Proof. (a) We show (i) =⇒ (ii) =⇒ (iii) =⇒ (i). Since (ii) =⇒ (iii) is clear,
we show (i) =⇒ (ii) and (iii) =⇒ (i).

(i) =⇒ (ii) Suppose that A is wo-compact. Then clearly A is wo-closed. Let
x ∈ X and (Tαx) a net in Ax. Since A is wo-compact, there is a subnet (Tβ)
of (Tα) such that Tβ

wo−→ T for some T ∈ A. In particular, for each y∗ ∈ Y ∗

y∗Tβx −→ y∗Tx.

This shows
Tβx

w−→ Tx.

Hence Ax is w -compact in Y .
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(iii) =⇒ (i) Consider the map ψ : (B(X,Y ),wo) −→
∏

x∈X(Y,w)x defined
by

ψ(T ) = (Tx)x∈X ,

where (Y,w)x = (Y,w) for all x ∈ X. Then clearly ψ is injective. Let (Tα) be
a net and T in B(X,Y ). Then it is easy to check that

Tα
wo−→ T if and only if ψ(Tα)

pro−→ ψ(T ),

where pro is the product topology on
∏

x∈X(Y,w)x. Thus ψ : (B(X,Y ),wo) −→
(ψ(B(X,Y )), pro) is a wo-to-pro homeomorphism. First we will show ψ(Awo

) =
ψ(A)

pro
. To show this, it is enough to show that ψ(A)

pro
⊂ ψ(Awo

). Let
(yx)x∈X ∈ ψ(A)

pro
. Then there is a net (ψ(Tα)) in ψ(A) such that ψ(Tα)

pro−→
(yx)x∈X . Thus

Tαx
w−→ yx

for each x ∈ X. Now for each x ∈ X, let Tx = yx. Then it is easy to check that
T is a linear operator from X into Y . Since Ax

w
is w -compact in Y for each

x ∈ X, Ax is w -bounded in Y for each x ∈ X. It follows that A is wo-bounded
in B(X,Y ) and so is bounded in B(X,Y ). Now if ∥x∥ ≤ 1, then we have

∥Tx∥ ≤ lim inf
α

∥Tαx∥ ≤ sup
α

∥Tαx∥ ≤ sup
S∈A

∥S∥.

Therefore T ∈ B(X,Y ). Hence (yx)x∈X = (Tx)x∈X = ψ(T ) ∈ ψ(Awo
) which

shows ψ(A)
pro

⊂ ψ(Awo
). To complete the proof, we observe

ψ(A) = ψ(Awo
) = ψ(A)

pro
⊂

∏
x∈X

Ax
pro

=
∏
x∈X

Ax
w
.

By the virtue of the Tychonoff’s theorem ψ(A) is pro-compact. Since ψ is a
homeomorphism, A is wo-compact.

(b) Recall (2.1). Then it is easy to check that

(2.2) A is wao-compact if and only if A∗ is wo-compact in B(Y ∗, X∗).

By (a) we complete the proof. ¤
Corollary 2.12. Suppose that A is a set in B(X,Y ) and that B∗(X,Y ) is
wo-closed in B(Y ∗, X∗). Then the following are equivalent.

(a) A is wao(swao)-compact.
(b) A is wao-closed and for each y∗ ∈ Y ∗, A∗y∗ is w-compact in X∗, where

w is the weak topology on X∗.
(c) A is wao-closed and for each y∗ ∈ Y ∗, A∗y∗w

is w-compact in X∗.

Proof. By Proposition 2.11(b) we must show that A∗ is wo-closed in B(Y ∗, X∗)
if and only if A is wao-closed. But it is easy to show the following:

If A∗ is wo-closed in B(Y ∗, X∗), then A is wao-closed.
If B∗(X,Y ) is wo-closed and A is wao-closed, then A∗ is wo-closed in

B(Y ∗, X∗).
From these we complete the proof. ¤
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Now new versions of the Mazur’s compactness theorem in B(X,Y ) are es-
tablished.

Theorem 2.13. Suppose that A is a set in B(X,Y ).
(a) If A is wo(swo)-compact, then cowo(A)=coswo(A) is wo(swo)-compact.
(b) If A is wao(swao)-compact, then (cowao(A))∗ = (coswao(A))∗ is rela-

tively wo(swo)-compact in B(Y ∗, X∗).

Proof. (a) From Proposition 2.11(a) it is enough to show that cowo(A)x is
relatively w -compact in Y for each x ∈ X. First it is easy to check that for
any set A in B(X,Y ),

(2.3) Awo
x ⊂ Ax

w

for each x ∈ X. Now let x ∈ X. Then we have

cowo(A)x ⊂ co(A)x
w

= cow(Ax).

By Proposition 2.11(a) Ax is w -compact in Y . Also cow
(
Ax

)
is w -compact

in Y by Krein-Šmulian’s weak compact theorem. Hence cowo(A)x is relatively
w -compact in Y .

(b) For any set A in B(X,Y ), it is easy to check the following:

(2.4)
(
Awao)∗ ⊂ A∗wo

.

Now if A is wao-compact, then by (2.2) A∗ is wo-compact. By (a) cowo(A∗) is
wo-compact in B(Y ∗, X∗). From (2.4) it follows that

(cowao(A))∗ ⊂ co(A)∗
wo

= cowo(A∗).

Hence (cowao(A))∗ is relatively wo-compact. ¤

Corollary 2.14. Suppose that A is a set in B(X,Y ) and that B∗(X,Y ) is wo-
closed in B(Y ∗, X∗). If A is wao(swao)-compact, then cowao(A) = coswao(A)
is wao(swao)-compact.

Proof. By (2.2) it is enough to show that (cowao(A))∗ is wo-compact in B(Y ∗,
X∗). From Theorem 2.13(b) we should show that (cowao(A))∗ is wo-closed.
Now let a net (T ∗

α) in (cowao(A))∗ and T ∈ B(Y ∗, X∗) with T ∗
α

wo−→ T . Since
B∗(X,Y ) is wo-closed, T ∈ B∗(X,Y ). So T is an adjoint S∗. Now it follows
that

Tα
wao−→ S.

Since (Tα) ⊂ cowao(A) and cowao(A) is wao-closed, S ∈ cowao(A) and so
T = S∗ ∈ (cowao(A))∗. Hence (cowao(A))∗ is wo-closed. ¤

In [8], the following proposition was shown for B(X).

Proposition 2.15. (a) Every wo(wao, swo, swao)-limit point compact set
in B(X,Y ) is bounded.

(b) Every weak∗o(wo, wao, weak∗, swo, swao)-limit point compact set in
B(X, Y ∗) is bounded.
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Since the proof of Proposition 2.15 is the same as the proof in [8], we omit
it.

Note that the sequential compactness implies the limit point compactness in
any topological space. So by Proposition 2.3(b) and Proposition 2.15 we have
the following.

Remark 2.16. (a) If A is a set in B(X,Y ), then A is swao-sequentially (respec-
tively, limit point) compact if and only if A is wao-sequentially (respectively,
limit point) compact, and A is swo-sequentially (respectively, limit point) com-
pact if and only if A is wo-sequentially (respectively, limit point) compact. If
A is a set in B(X,Y ∗), then A is weak∗-sequentially (respectively, limit point)
compact if and only if A is weak∗o-sequentially (respectively, limit point) com-
pact.

(b) If A is a set in B(X,Y ), then it is easy to check that A is wao(swao)-
sequentially compact (respectively, limit point) if and only if A∗ is wo(swo)-
sequentially (respectively, limit point) compact in B(Y ∗, X∗).

We now have the following theorem. Some parts of Theorems 2.17 and 2.19
are well known (cf. [4, Exercises VI.9.4 and VI.9.6]).

Theorem 2.17. Suppose that A is a set in B(X,Y ).

(a) If A is wo(swo)-sequentially compact, then Awo
is wo(swo)-compact.

(b) If A is wao(swao)-sequentially compact, then
(
Awao)∗ is relatively wo

(swo)-compact in B(Y ∗, X∗).

Proof. (a) By Proposition 2.11(a), it is enough to show that Awo
x is relatively

w -compact in Y for each x ∈ X. Recall (2.3). Then

Awo
x ⊂ Ax

w

for each x ∈ X. Therefore we should show that Ax
w

is w -compact in Y for
each x ∈ X. To show this, by the virtue of the Eberlein-S̆mulian theorem we
only need to show that Ax is w -sequentially compact in Y for each x ∈ X.
Now let x ∈ X and (Tnx) be a sequence in Ax. Since A is wo-sequentially
compact, there is a subsequence (Tnk

) of (Tn) and T ∈ A such that

Tnk

wo−→ T.

In particular y∗Tnk
x −→ y∗Tx for each y∗ ∈ Y ∗. Thus Tnk

x
w−→ Tx. Hence

Ax is w -sequentially compact.
(b) If A is wao-sequentially compact, then by Remark 2.16(b), A∗ is wo-

sequentially compact in B(Y ∗, X∗). By (a) A∗wo
is wo-compact. Hence

(
Awao)∗

is relatively wo-compact by (2.4). ¤

The proof of the following corollary is essentially the same as the proof of
Corollary 2.14.
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Corollary 2.18. Suppose that A is a set in B(X,Y ) and that B∗(X,Y ) is
wo-closed in B(Y ∗, X∗). If A is wao(swao)-sequentially compact, then Awao

is
wao(swao)-compact.

The following results give various characterizations of reflexivity.

Theorem 2.19. The following are equivalent.
(a) Y is reflexive.
(b) B(X,Y, 1) is wo(swo)-compact.
(c) F(X,Y, 1)

wo
is wo(swo)-compact.

Proof. We show (a)=⇒(b)=⇒(c)=⇒(a). But (b)=⇒(c) is clear. So we are left
with (a)=⇒(b) and (c)=⇒(a). To show these, we will use Proposition 2.11(a).

(a)=⇒(b) Suppose that Y is reflexive. Let (Tα) be a net in B(X,Y, 1) and
T ∈ B(X,Y ) with Tα

wo−→ T . Then Tαx
w−→ Tx in Y for each x ∈ X. Since

B(X,Y, 1)x is convex in Y for each x ∈ X,

Tx ∈ B(X,Y, 1)x
w

= B(X,Y, 1)x

for each x ∈ X. From this, it follows that T ∈ B(X,Y, 1). Hence B(X,Y, 1) is
wo-closed. Also, for each x ∈ X, B(X,Y, 1)x

w
is w -compact in Y because Y is

reflexive. Hence B(X,Y, 1) is wo-compact by Proposition 2.11(a).
(c)=⇒(a) Suppose that F(X,Y, 1)

wo
is wo-compact. Let x0 ∈ X with

∥x0∥ = 1. Then F(X,Y, 1)
wo

x0 is w -compact in Y . Now choose x∗
0 ∈ X∗

with ∥x∗
0∥ = 1 such that x∗

0x0 = 1. Consider Ty = x∗
0(·)y ∈ F(X,Y, 1) for each

y ∈ BY , where BY is the unit ball in Y . Then for each y ∈ BY

y = x∗
0(x0)y = Tyx0 ∈ F(X,Y, 1)x0.

It follows that BY ⊂ F(X,Y, 1)x0. Consequently BY is w -compact in Y . Hence
Y is reflexive. ¤

Theorem 2.20. The following are equivalent.
(a) X is reflexive.
(b) B∗(X,Y, 1)

wo
is wo(swo)-compact in B(Y ∗, X∗).

(c) F∗(X,Y, 1)
wo

is wo(swo)-compact in B(Y ∗, X∗).

Proof. To show that (a), (b), and (c) are equivalent, it is enough to show
that (c) implies (a) because by Theorem 2.19 (a) implies (b) and clearly (b)
implies (c). Now assume (c) and let y0 ∈ Y with ∥y0∥ = 1. Choose y∗

0 ∈
Y ∗ with ∥y∗

0∥ = 1 such that y∗
0y0 = 1. Since F∗(X,Y, 1)

wo
is wo-compact,

F∗(X,Y, 1)
wo

y∗
0 is w -compact in X∗. Therefore to show that X is reflexive, it

is enough to show that BX∗ ⊂ F∗(X,Y, 1)
wo

y∗
0 . Let x∗ ∈ BX∗ and consider an

operator Tx∗ = (·)y0x
∗. Then Tx∗ ∈ F∗(X,Y, 1) and we have

x∗ = y∗
0(y0)x∗ = Tx∗y∗

0 ∈ F∗(X,Y, 1)y∗
0 .

This completes the proof of reflexivity of X. ¤
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Proposition 2.21. The following are equivalent.
(a) Y is reflexive.
(b) F(Y ∗, X∗) = F∗(X,Y ).
(c) F(Y ∗, X∗, 1) = F∗(X,Y, 1).

Proof. Note that if Y is reflexive, then for every operator in B(Y ∗, X∗) is
an adjoint operator. Since (a)=⇒(b) and (b)=⇒(c) are clear, we only show
(c)=⇒(a). Suppose that Y is not reflexive. Then there is a y∗∗

0 ∈ Y ∗∗ with
∥y∗∗

0 ∥ = 1 such that y∗∗
0 ∈ Y ∗∗ \ QY (Y ), where QY is the natural map from Y

into Y ∗∗. Choose x0 ∈ X and x∗
0 ∈ X∗ so that 1 = ∥x0∥ = ∥x∗

0∥ = x∗
0x0. Now

consider
T0 = y∗∗

0 (·)x∗
0 ∈ F(Y ∗, X∗, 1).

If T0 ∈ F∗(X,Y, 1), then QX(x0)T0 ∈ QY (Y ). But QX(x0)T0 = y∗∗
0 ∈ Y ∗∗ \

QY (Y ). This is a contradiction. Hence F(Y ∗, X∗, 1) ̸⊂ F∗(X,Y, 1). ¤

In Section 3, we introduce the τ topology which is stronger than the wo
topology, and the following lemma comes from [11, Proposition 3.1].

Lemma 2.22. F(Y ∗, X∗, λ) ⊂ F∗(X,Y, λ)
τ

for each λ > 0.

Proposition 2.23. The following are equivalent.
(a) Y is reflexive.
(b) B∗(X,Y ) is wo-closed in B(Y ∗, X∗).
(c) B∗(X,Y, 1) is wo-closed in B(Y ∗, X∗).

Proof. We show (a)=⇒(b)=⇒(c)=⇒(a).
(a)=⇒(b) From B∗(X,Y )

wo
⊂ B(Y ∗, X∗) = B∗(X,Y ).

(b)=⇒(c) Let T ∈ B∗(X,Y, 1)
wo

⊂ B∗(X,Y )
wo

= B∗(X,Y ). Then T is an
adjoint S∗. Then there is a net (Tα) in B(X,Y, 1) such that

Tα
wao−→ S.

As in the proof of Theorem 2.19, we have S ∈ B(X,Y, 1). Thus T = S∗ ∈
B∗(X,Y, 1). Hence B∗(X,Y, 1) is wo-closed.

(c)=⇒(a) By Lemma 2.22 we have

F(Y ∗, X∗, 1) ⊂ F∗(X,Y, 1)
τ
⊂ B∗(X,Y, 1)

wo
= B∗(X,Y, 1).

It follows that F(Y ∗, X∗, 1) = F∗(X,Y, 1). Hence Y is reflexive by Proposi-
tion 2.21. ¤

From Theorem 2.20 and Proposition 2.23 we have the following.

Corollary 2.24. X and Y are reflexive if and only if B∗(X,Y, 1) is wo(swo)-
compact in B(Y ∗, X∗).

Consequently, X and Y are reflexive if and only if B(X,Y, 1) is wao(swao)-
compact.
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The final theorem of this section is a new version of the Day’s lemma in
B(X,Y ). The proof of the theorem is the same as the proof of [8, Theorem
1.6].

Theorem 2.25. If A is a relatively weak-compact set in B(X,Y ) and T ∈ Awo
,

then there is a sequence (Tn) in A such that Tn
weak−→ T .

3. Topologies generated by subbases on B(X, Y )

Suppose that S is a collection of sets in B(X,Y ). Then the topology gen-
erated by S is the smallest topology on B(X,Y ) containing S. We call S a
subbasis on B(X,Y ). In this section we study topologies generated by sub-
bases on B(X,Y ). Now we formally introduce some of such topologies.

Definition 3.1. For x ∈ X, ϵ > 0, and T ∈ B(X,Y ), we put

N(T ; x, ϵ) = {R ∈ B(X,Y ) : ∥Rx − Tx∥ < ϵ}.

Let S1 be the collection of all such N(T ;x, ϵ)’s.
For (xn) ⊂ X satisfying

∑
n ∥xn∥ < ∞, ϵ > 0, and T ∈ B(X,Y ), we put

N(T ; (xn), ϵ) = {R ∈ B(X,Y ) :
∑

n

∥Rxn − Txn∥ < ϵ}.

Let S2 be the collection of all such N(T ; (xn), ϵ)’s.
For compact K ⊂ X, ϵ > 0, and T ∈ B(X,Y ), we put

N(T ; K, ϵ) = {R ∈ B(X,Y ) : sup
x∈K

∥Rx − Tx∥ < ϵ}.

Let S3 be the collection of all such N(T ;K, ϵ)’s.
Then the strong operator topology (in short, sto) on B(X,Y ) is the topology

generated by S1, the summable strong operator topology (in short, ssto) on
B(X,Y ) is the topology generated by S2, and the τ -topology (in short, τ) on
B(X,Y ) is the topology generated by S3.

From Definition 3.1 we see the following: for a net (Tα) and T in B(X,Y )

Tα
sto−→ T if and only if ∥Tαx − Tx∥ −→ 0

for each x ∈ X;

Tα
ssto−→ T if and only if

∑
n

∥Tαxn − Txn∥ −→ 0

for each (xn) ⊂ X satisfying
∑

n ∥xn∥ < ∞;

Tα
τ−→ T if and only if sup

x∈K
∥Tαx − Tx∥ −→ 0

for each compact K ⊂ X.
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It is easy to check that above topologies are locally convex vector topologies
and have T0-separation axiom. Notice that every vector topology having T0-
separation axiom is completely regular. Hence sto, ssto, and τ are completely
regular locally convex vector topologies.

We now have simple relations between them.

Proposition 3.2. (a) τ ≥ ssto ≥ sto.
(b) On each bounded set in B(X,Y ) τ = ssto = sto.

Proof. (a) Since ssto ≥ sto is clear, we only show that τ ≥ ssto. Suppose (Tα)
is a net in B(X,Y ) and Tα

τ−→ 0. Then we must show that Tα
ssto−→ 0. For this

let (xn) ⊂ X satisfy
∑

n ∥xn∥ < ∞. Then one can find a sequence (βn) such
that 0 < βn ↑ ∞ and

∑
n βn∥xn∥ = 1. Put K = {xn/(βn∥xn∥) : n ≥ 1} ∪ {0}.

Then K is compact. Hence we have∑
n

∥Tαxn∥ ≤ sup
x∈K

∥Tαx∥,

which proves
∑

n ∥Tαxn∥ −→ 0.
(b) Let (Tα) be a net and T in a bounded set in B(X,Y ). Then a simple

calculation shows that

Tα
sto−→ T implies Tα

τ−→ T.

Hence we have the conclusion by (a). ¤

We now summarize simple relations between all of our topologies in the
following figures.

norm

­
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J
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­

­­À
ssto
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½
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Z
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¡
¡
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Figure 1 : On B(X,Y )
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Figure 3 : On bounded sets in B(X,Y )

norm
¡

¡ª
@

@R
τ = ssto = stoweak

swao = wao
@

@R

¡
¡ª

¡
¡

¡
¡

¡ª
swo = wo

?
weak∗ = weak∗o

Figure 4 : On bounded sets in B(X,Y ∗)

It is interesting to observe that the above diagrams are sharp for infinite-
dimensional Banach spaces X and Y . We introduce nontrivial examples.

Example 3.3. (1) (The τ topology is not stronger than the wao topology
in general).

Consider the sequence (Tn) in B(l1) given by

Tn(αi) =
1
n

(αj + · · · + αj+n−1)j .

Observe that

T ∗
n(βj) =

1
n

(β1, β1 + β2, . . . , β1 + · · · + βn, β2 + · · · + βn+1, . . .).

Since ∥Tn∥ ≤ 1 and Tn
sto−→ 0, we have Tn

τ−→ 0. But if λ is a Banach
limit on l∞, then

λT ∗
n(1, 1, 1, . . .) = 1

for all n, which proves that Tn

wao

̸−→ 0.
(2) (The weak topology is not stronger than the sto topology in general).

Let 1 < p < q < ∞. Then by the Pitt’s theorem B(lq, lp) = K(lq, lp).
Then B(lq, lp) is reflexive; see [13, Theorem 4.19]. Thus B(lq, lp, 1) is
weak-compact. If the weak topology were stronger than the sto topol-
ogy on B(lq, lp), we would have that B(lq, lp, 1) is sto-compact, which,
in view of Theorem 3.15, is absurd because lp is obviously of infinite
dimension.

(3) (The sto and wao topology is not stronger than the weak∗ topology in
general). Let W be the Willis space [14]. Then W is a separable and
reflexive Banach space satisfying

K(W ∗) ̸⊂ F(W ∗)
τ

= F(W ∗)
swo

= F(W ∗)
weak∗

and
IW∗ ̸∈ F(W ∗)

τ
= F(W ∗)

weak∗
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(see [3, Example 2.3], Proposition 2.3(c), and Proposition 3.6(a)), where
IW∗ is the identity in B(W ∗). If the sto topology were stronger than
the weak∗ topology on B(W ∗), then by Remark 3.11

K(W ∗) ⊂ F(W ∗)
sto

⊂ F(W ∗)
weak∗

.

This is a contradiction. If the wao topology were stronger than the
weak∗ topology on B(W ∗), then by Remark 3.11 and Proposition 2.3(c)

IW∗ ∈ F(W ∗)
sto

⊂ F(W ∗)
wo

= F(W ∗)
wao

⊂ F(W ∗)
weak∗

.

This is a contradiction.

In order to study more about our topologies we need the following lemmas.
Grothendieck [6] showed the first equation of (a) of Lemma 3.4 and (b) is from
[4, Theorem VI.1.4]. And the proof of the second equation of (a) is found to
follow more or less the same lines in the proof of (b) if one is willing to use
the fact that c0(Y )∗ = l1(Y ∗); also, a simple proof of the equation follows from
τ ≥ ssto ≥ swo in Figure 1.

Lemma 3.4. (a) (B(X,Y ), τ)∗ = (B(X,Y ), swo)∗ = (B(X,Y ), ssto)∗.
(b) (B(X,Y ), sto)∗ = (B(X,Y ), wo)∗.

Lemma 3.5 ([12, Corollary 2.2.29]). Suppose that a vector space V has two
locally convex topologies T1 and T2 such that the dual spaces of V under the two
topologies are the same. If C is a convex set in V, then CT1 = CT2 .

See Figure 3. Then by Lemmas 3.4 and 3.5 we have the following proposition.

Proposition 3.6. (a) If C is a convex set in B(X,Y ), then Cτ
= Cswo

=
Cssto

and Csto
= Cwo

.
(b) If C is a bounded and convex set in B(X,Y ), then Cτ

= Cswo
= Csto

=
Cssto

= Cwo
.

See Figure 1. Then the operator norm topology is the strongest topology
among the vector topologies we consider and wo is the weakest. In Proposition
2.5 we have shown that wo-boundedness implies the operator norm bounded-
ness. Hence we have the following proposition.

Proposition 3.7. Let A be a set in B(X,Y ). Then the following are equivalent.
(a) A is bounded.
(b) A is weak-bounded.
(c) A is swao-bounded.
(d) A is ssto-bounded.
(e) A is swo-bounded.
(f) A is τ -bounded.
(g) A is wao-bounded.
(h) A is sto-bounded.
(i) A is wo-bounded.
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Similarly, by Proposition 2.6, boundedness conditions of all our topologies
on B(X,Y ∗) are equivalent.

Now we consider the metrizability on B(X,Y ) with respect to τ , ssto, and
sto.

Theorem 3.8. τ (respectively, ssto, sto) on B(X,Y ) is metrizable if and only
if X is finite-dimensional.

Proof. Suppose that X is infinite-dimensional. We will show that every τ , ssto,
and sto-open set is unbounded. Then the proof, that τ (respectively, ssto, sto)
is not metrizable, follows the same lines as in Theorem 2.7. Now let U ∈ τ
and may assume 0 ∈ U . Suppose, for a contradiction, that U is bounded, say
∥T∥ ≤ t for all T ∈ U . Since 0 ∈ U and U is τ -open, there is a compact K and
ϵ > 0 such that

(†) T ∈ U whenever sup
x∈K

∥Tx∥ ≤ ϵ.

Here we may assume that K is balanced and convex as well; this is due to the
Mazur’s compactness theorem. Now we claim that ϵBX ⊂ tK, where BX is the
unit ball in X, which implies BX is compact, hence X is finite-dimensional,
a contradiction. Indeed, if ϵBX ̸⊂ tK, then there is a x0 ∈ BX such that
ϵx0 ̸∈ tK. By the geometric version of the Hahn -Banach theorem there is a
x∗

0 ∈ X∗ such that
sup

x∈tK
Rex∗

0x ≤ ϵt < Rex∗
0(ϵx0),

which implies, in view of balancedness of K, that supx∈K |x∗
0x| ≤ ϵ and |x∗

0x0| >
t. Choose y0 ∈ Y with ∥y0∥ = 1 and define T ∈ B(X,Y ) by

Tx = (x∗
0x)y0.

This T satisfies
sup
x∈K

∥Tx∥ = sup
x∈K

|x∗
0x| ≤ ϵ

but
∥T∥ = ∥x∗

0∥ ≥ |x∗
0x0| > t,

which contradicts (†). We have shown that every τ -open set is unbounded. By
Proposition 3.2(a) every ssto-open or sto-open set is also unbounded.

To show the other part, assume that X is finite-dimensional. Then it is
enough to show that all topologies τ , ssto, and sto coincide with the operator
norm topology on B(X,Y ). For this we show that sto coincides with the
operator norm topology. Now let (Tα) be a net in B(X,Y ) such that Tα

sto−→ 0,
and ϵ > 0. Since X is finite-dimensional, there is a finite sequence (x1, . . . , xn)
in X such that

BX ⊂ co({x1, . . . , xn}).
Now we can choose an α0 such that α ≽ α0 implies

∥Tαxi∥ ≤ ϵ
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for all i = 1, . . . , n. Thus clearly we have that α ≽ α0 implies ∥Tα∥ ≤ ϵ. Hence
∥Tα∥ −→ 0 which completes the proof. ¤

Now by the virtue of boundedness we have following Theorem 3.9, of which
the proof is found in [8].

Theorem 3.9. (a) Suppose that X is separable. Then τ(ssto, sto) on each
bounded set in B(X,Y ) is metrizable.

(b) Suppose that X and Y are separable. Then τ(ssto, sto) on each bounded
set in B(X,Y ) has a countable basis and is metrizable. Also B(X,Y )
is τ(ssto, sto)-separable.

For sto, ssto, and τ -completeness of B(X,Y ), we have the following theorem.

Theorem 3.10. (a) B(X,Y ) is complete with respect to both τ and ssto.
(b) B(X,Y ) is sto-complete if and only if X is finite-dimensional.

Proof. (a) We only show that B(X,Y ) is τ -complete. The proof of ssto-
completeness is similar. Suppose that (Tα) is a τ -Cauchy net in B(X,Y ).
Then for each x ∈ X, (Tαx) converges in Y . Define a linear map T : X −→ Y
by

Tx = lim
α

Tαx

for each x ∈ X. We first claim T ∈ B(X,Y ). Indeed, if T were unbounded, then
we would have a sequence (xn) ⊂ X such that ∥xn∥ < 1/n2 and ∥Txn∥ > n
for all n. Since (Tα) is also ssto-Cauchy by τ ≥ ssto, there is a α0 such that
α, β ≽ α0 implies ∑

n

∥(Tα − Tβ)xn∥ ≤ 1.

Since Tαx −→ Tx for each x ∈ X, we have∑
n

∥(Tα0 − T )xn∥ ≤ 1.

It follows from this that for all n

∥Tα0∥ ≥ ∥Tα0xn∥ ≥ ∥Txn∥ − ∥(Tα0 − T )xn∥ > n − 1,

which contradicts boundedness of Tα0 .
Now to show Tα

τ−→ T , let K be a compact set in X and ϵ > 0. Since (Tα)
is τ -Cauchy, there is a γ such that α, β ≽ γ implies

sup
x∈K

∥(Tα − Tβ)x∥ ≤ ϵ.

Since Tαx −→ Tx for each x ∈ X, it follows that α ≽ γ implies

sup
x∈K

∥(Tα − T )x∥ ≤ ϵ.

Hence Tα
τ−→ T which completes the proof.

(b) If X is finite-dimensional, as in the proof of (a) we can show that B(X,Y )
is sto-complete. Now suppose that X is infinite-dimensional. Then there is an
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unbounded linear operator T from X into Y . Now consider a directed set
I = {F ⊂ X : F is finite} with a relation ≽, where for F and G ∈ I,
F ≽ G if and only if F ⊃ G. Since the restriction T |span(F ) to span(F ) of T
is bounded finite rank linear operator from span(F ) into Y for each F ∈ I, by
an application of the Hahn-Banach extension theorem there is a TF ∈ B(X,Y )
such that TF |span(F ) = T |span(F ) and TF (X) = T |span(F )(span(F )). Consider
the net (TF ) in B(X,Y ). Let x ∈ X and ϵ > 0. Then E,G ≽ {x} implies

∥(TE − TG)x∥ = ∥Tx − Tx∥ = 0 < ϵ.

It follows that (TF ) is sto-Cauchy. Since for each x ∈ X and E ≽ {x} implies

TEx = Tx,

the only possible sto-limit of (TF ) is T which is an unbounded linear operator.
It follows that the sto topology on B(X,Y ) is not complete. ¤

Remark 3.11. For every Banach spaces X and Y , it is interesting to observe
that

B(X,Y ) = F(X,Y )
sto

.

Indeed, for every T ∈ B(X,Y ), as in the proof of Theorem 3.10(b) we obtain a
net (Tα) in F(X,Y ) with Tα

sto−→ T . For dual spaces, by Lemma 4.7 in Section
4, we have the following:

B(Y ∗, X∗) = F∗(X,Y )
sto

.

Next, as in Section 2, we are concerned with compactness in B(X,Y ). By
Proposition 3.2(b) τ , ssto, and sto-compactness are equivalent.

First we give a characterization of sto-compactness. Some parts of Propo-
sition 3.12, Theorems 3.13 and 3.14 are well known (cf. [4, Exercises VI.9.2,
VI.9.3, and VI.9.4]).

Proposition 3.12. Suppose that A is a set in B(X,Y ). The following are
equivalent.

(a) A is sto(τ , ssto)-compact.
(b) A is sto-closed and for each x ∈ X, Ax is norm-compact in Y .
(c) A is sto-closed and for each x ∈ X, Ax is norm-compact in Y .

Proof. The proof is similar to the proof of Proposition 2.11(a). Since (b)=⇒(c)
is clear, we show that (a)=⇒(b) and (c)=⇒(a).

(a)=⇒(b) Suppose that A is sto-compact. Then as in the proof of Proposi-
tion 2.11(a), we see that A is sto-closed and Ax is norm-compact in Y for each
x ∈ X.

(c)=⇒(a) Consider the map ψ : (B(X,Y ), sto) −→
∏

x∈X Yx defined by

ψ(T ) = (Tx)x∈X ,



1698 CHANGSUN CHOI AND JU MYUNG KIM

where Yx = Y for all x ∈ X and Yx has the norm-topology. Then as in the proof
of Proposition 2.11(a), we see that ψ : (B(X,Y ), sto) −→ (ψ(B(X,Y )), pro) is
a sto-to-pro homeomorphism and ψ(Asto

) = ψ(A)
pro

. Thus we have

ψ(A) = ψ(Asto
) = ψ(A)

pro
⊂

∏
x∈X

Ax
pro

=
∏
x∈X

Ax.

By the virtue of the Tychonoff’s theorem ψ(A) is pro-compact. Since ψ is a
homeomorphism, A is sto-compact. ¤

As in Section 2, new versions of the Mazur’s compactness theorem in B(X,Y )
are established.

Theorem 3.13. Suppose that A is a set in B(X,Y ). If A is sto(ssto, τ)-
compact, then costo(A) = cossto(A) = coτ (A) is sto(ssto, τ)-compact.

Proof. From Proposition 3.12 it is enough to show that costo(A)x is relatively
norm-compact in Y for each x ∈ X. First it is easy to check that for any set
A in B(X,Y ),

(3.1) Asto
x ⊂ Ax

for each x ∈ X. Let x ∈ X. Then we have

costo(A)x ⊂ co(A)x = co(Ax).

By Proposition 3.12 Ax is norm-compact in Y . Also co
(
Ax

)
is norm-compact

in Y by the Mazur’s compactness theorem. Hence costo(A)x is relatively norm-
compact in Y . ¤

The wo (respectively, weak∗o) topology is the weakest topology among all
our topologies on B(X,Y ) (respectively, B(X,Y ∗)). Since every wo (respec-
tively, weak∗o)-limit point compact set in B(X,Y ) (respectively, B(X,Y ∗)) is
bounded (Proposition 2.15), the limit point compactness of all our topologies
on B(X,Y ) and B(X,Y ∗) implies boundedness. Since the sequential compact-
ness implies the limit point compactness, by Proposition 3.2(b) sto, ssto, and
τ -sequential compactness (or limit point compactness) are equivalent.

Now we have the following.

Theorem 3.14. Suppose that A is a set in B(X,Y ). If A is sto(ssto, τ)-
sequentially compact, then Asto

is sto(ssto, τ)-compact.

Proof. By Proposition 3.12, it is enough to show that Asto
x is relatively norm-

compact in Y for each x ∈ X. Recall (3.1). Then

Asto
x ⊂ Ax

for each x ∈ X. Therefore we must show that Ax is norm-compact in Y
for each x ∈ X. Since A is sto-sequentially compact, it is easy to show that
Ax is norm-sequentially compact in Y for each x ∈ X. Hence Ax = Ax is
norm-compact in Y for each x ∈ X. ¤
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The following results give characterizations of finite-dimensional spaces.

Theorem 3.15. The following are equivalent.
(a) Y is finite-dimensional.
(b) B(X,Y, 1) is sto(ssto, τ)-compact.
(c) F(X,Y, 1) is sto(ssto, τ)-compact.

Proof. Recall Proposition 3.12 and the proof of Theorem 2.19. We show that
(a)⇐⇒(b) and (a)⇐⇒(c).

(a)=⇒(b) Suppose that Y is finite-dimensional. As in the proof of Theo-
rem 2.19 we have B(X,Y, 1) is sto-closed. Also for each x ∈ X, B(X,Y, 1)x
is norm-compact in Y because Y is finite-dimensional. Hence B(X,Y, 1) is
sto-compact by Proposition 3.12.

(a)=⇒(c) From B(X,Y, 1) = F(X,Y, 1).
(c)=⇒(a) Suppose that F(X,Y, 1) is sto-compact. Let x0 ∈ X with ∥x0∥ =

1. Then F(X,Y, 1)x0 is norm-compact in Y . As in the proof of Theorem 2.19
we have

BY ⊂ F(X,Y, 1)x0.

It follows that BY is norm-compact in Y . Hence Y is finite-dimensional.
(b)=⇒(a) The proof is the same as the proof of (c)=⇒(a). ¤

Theorem 3.16. The following are equivalent.
(a) X is finite-dimensional.
(b) B∗(X,Y, 1)

sto
is sto(ssto, τ)-compact in B(Y ∗, X∗).

(c) F∗(X,Y, 1)
sto

is sto(ssto, τ)-compact in B(Y ∗, X∗).

Proof. Recall the proof of Theorem 2.20. To show that (a), (b), and (c) are
equivalent, it is enough to show that (c) implies (a) because by Theorem 3.15
(a) implies (b) and clearly (b) implies (c). Now assume (c) and let y0 ∈ Y
with ∥y0∥ = 1. Choose y∗

0 ∈ Y ∗ with ∥y∗
0∥ = 1 such that y∗

0y0 = 1. Since
F∗(X,Y, 1)

sto
is sto-compact, F∗(X,Y, 1)

sto
y∗
0 is norm-compact in X∗. As in

the proof of Theorem 2.20, we have BX∗ ⊂ F∗(X,Y, 1)
sto

y∗
0 . Thus BX∗ is

norm compact in X∗. Hence X is finite-dimensional. ¤
The proof of the following proposition is essentially the same as Proposi-

tion 2.23.

Proposition 3.17. The following are equivalent.
(a) Y is reflexive.
(b) B∗(X,Y ) is sto (respectively, τ)-closed in B(Y ∗, X∗).
(c) B∗(X,Y, 1) is sto (respectively, τ)-closed in B(Y ∗, X∗).

Then we have a corollary of Theorem 3.16.

Corollary 3.18. The following are equivalent.
(a) X is finite-dimensional and Y is reflexive.
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(b) B∗(X,Y, 1) is sto(ssto, τ)-compact.
(c) F∗(X,Y, 1) is sto(ssto, τ)-compact.

Proof. (a)=⇒(b) and (b)=⇒(a) are clear. (a)=⇒(c) follows from B∗(X,Y, 1) =
F∗(X,Y, 1). Finally, assume (c). By Theorem 3.16 X is finite-dimensional.
Hence (a) follows from B∗(X,Y, 1) = F∗(X,Y, 1). ¤

4. Approximation properties

In the Banach space theory, the approximation property, which already ap-
peared in Banach’s book [1], is one of the fundamental properties. Grothend-
ieck [6] initiated the investigation of the variants of the approximation property
and the relations between them. In this section we introduce the approximation
property and its recent versions, and apply some of our topologies to them.

In the study of the approximation property, one important tool is the τ
topology.

Definition 4.1. A Banach space X is said to have the approximation property
(in short, AP) if IX ∈ F(X)

τ
, where IX is the identity in B(X). Also X

is said to have the λ-bounded approximation property (in short, λ-BAP) if
IX ∈ F(X,λ)

τ
. In particular, if λ=1, then we say that X has the metric

approximation property (in short, MAP). A Banach space X is said to have
the compact approximation property (in short, CAP) if IX ∈ K(X)

τ
. Also X is

said to have the λ-bounded compact approximation property (in short, λ-BCAP)
if IX ∈ K(X,λ)

τ
. In particular, if λ=1, then we say that X has the metric

compact approximation property (in short, MCAP).

Casazza [2] summarized various results on approximation properties, includ-
ing his own results, and introduced many open problems on the approximation
property and its variants.

We now introduce recent versions of the approximation property.

Definition 4.2. A Banach space X is said to have the weak approximation
property (in short, WAP) if K(X) ⊂ F(X)

τ
. And X is said to have the bounded

weak approximation property (in short, BWAP) if, for every T ∈ K(X), there
is a λT > 0 such that T ∈ F(X,λT )

τ
. Also X is said to have the metric weak

approximation property (in short, MWAP) if K(X, 1) ⊂ F(X, 1)
τ
. A Banach

space X is said to have the quasi approximation property (in short, QAP) if
K(X) = F(X), where the closure is the operator norm closure.

In [3], [9], [10], and [11], Choi and Kim introduced and studied the above
properties.

Now by Proposition 3.6 we have simple characterizations of the approxima-
tion properties.

Proposition 4.3. (a) X has the AP if and only if IX ∈ F(X)
swo

.
(b) X has the CAP if and only if IX ∈ K(X)

swo
.
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(c) X has the WAP if and only if K(X) ⊂ F(X)
swo

.
(d) X has the λ-BAP if and only if IX ∈ F(X,λ)

wo
.

(e) X has the λ-BCAP if and only if IX ∈ K(X,λ)
wo

.
(f) X has the BWAP if and only if for every T ∈ K(X), there is a λT > 0

such that T ∈ F(X,λT )
wo

.
(g) X has the MWAP if and only if K(X, 1) ⊂ F(X, 1)

wo
.

Grothendieck [6] showed the following characterizations of the AP.

Lemma 4.4. (a) X has the AP if and only if for every Banach space Y ,
K(Y,X) = F(Y,X), where the closure is the operator norm closure.

(b) X∗ has the AP if and only if for every Banach space Y , K(X,Y ) =
F(X,Y ).

Kalton [7] showed the following lemma.

Lemma 4.5. Suppose that (Tn) is a sequence in K(X,Y ) and T ∈ K(X,Y ). If
Tn

wao−→ T , then there is a sequence (Sn) of convex combinations of {Tn} such
that ∥Sn − T∥ −→ 0.

From the definition of QAP and above lemmas we have the following.

Proposition 4.6. (a) X has the AP if and only if for every Banach space
Y and T ∈ K(Y,X), there is a sequence (Tn) in F(Y,X) such that
Tn

wao−→ T .
(b) X∗ has the AP if and only if for every Banach space Y and T ∈

K(X,Y ), there is a sequence (Tn) in F(X,Y ) such that Tn
wao−→ T .

(c) X has the QAP if and only if for every T ∈ K(X), there is a sequence
(Tn) in F(X) such that Tn

wao−→ T .

Recall Lemma 2.22. Then we see the following.

Lemma 4.7. F(Y ∗, X∗) ⊂ F∗(X,Y )
τ
.

We now have some characterizations of approximation properties for dual
spaces.

Theorem 4.8. (a) X∗ has the AP if and only if IX ∈ F(X)
swao

.
(b) X∗ has the λ-BAP if and only if IX ∈ F(X,λ)

wao
.

(c) If X∗ has the WAP, then K(X) ⊂ F(X)
swao

.
(d) If X∗ has the BWAP, then for every T ∈ K(X), there is a λT > 0 such

that T ∈ F(X,λT )
wao

.
(e) If X∗ has the MWAP, then K(X, 1) ⊂ F(X, 1)

wao
.

Proof. We show that (a), (c), and (e). The proofs of the others are similar. To
show (a), note that IX ∈ F(X)

swao
if and only if IX∗ ∈ F∗(X)

swo
. Now if X∗

has the AP, then by Lemma 4.7 IX∗ ∈ F∗(X)
swo

. Hence IX ∈ F(X)
swao

. Also,
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if IX ∈ F(X)
swao

, then IX∗ ∈ F∗(X)
swo

⊂ F(X∗)
swo

. Hence by Proposition
4.3(a) X∗ has the AP. To show (c), let T ∈ K(X). Then T ∗ ∈ K(X∗). By the
assumption, Proposition 3.6, and Lemma 4.7 T ∗ ∈ F∗(X)

swo
. It follows that

T ∈ F(X)
swao

. Hence K(X) ⊂ F(X)
swao

. To show (e), let T ∈ K(X, 1). Then
T ∗ ∈ K(X∗, 1). By hypothesis and Lemma 2.22 T ∗ ∈ F∗(X, 1)

wo
. It follows

that T ∈ F(X, 1)
wao

. Hence K(X, 1) ⊂ F(X, 1)
wao

. ¤
It is well known that if X∗ has the AP (respectively, λ-BAP), then X has

the AP (respectively, λ-BAP). From Theorem 4.8 (a), (b) and Proposition 4.3
(a), (d), we can also deduce these results. In [3, 9], the same results were shown
for the WAP, BWAP, and MWAP. These results are also shown from Theorem
4.8 (c), (d), (e) and Proposition 4.3 (c), (f), (g).

Recall the weak∗ and weak∗o topology on B(X∗, X∗). Then by Lemmas
2.22 and 4.7 we have the following corollary.

Corollary 4.9. (a) F(X∗, λ)
weak∗o

= F∗(X,λ)
weak∗o

for each λ > 0.

(b) F(X∗)
weak∗

= F∗(X)
weak∗

.

We now have some other characterizations of approximation properties. (a)
and (b) of the following theorem are also in [5, Lemma 2.1].

Theorem 4.10. (a) X has the AP if and only if IX∗ ∈ F(X∗)
weak∗

.

(b) X has the λ-BAP if and only if IX∗ ∈ F(X∗, λ)
weak∗o

.

(c) X has the WAP if and only if K∗(X) ⊂ F(X∗)
weak∗

.
(d) X has the BWAP if and only if for every T ∗ ∈ K∗(X), there is a

λT∗ > 0 such that T ∗ ∈ F(X∗, λT∗)
weak∗o

.

(e) X has the MWAP if and only if K∗(X, 1) ⊂ F(X∗, 1)
weak∗o

.

Proof. We show that (a), (c), and (e). The proofs of the others are simi-
lar. Notice that by Proposition 4.3(a) and Corollary 4.9(b) X has the AP

if and only if IX∗ ∈ F∗(X)
weak∗

= F(X∗)
weak∗

. Hence (a) follows. Also
by Proposition 4.3(c) and Corollary 4.9(b) X has the WAP if and only if

K∗(X) ⊂ F∗(X)
weak∗

= F(X∗)
weak∗

. Hence (c) follows. Finally by Proposi-
tion 4.3(g) and Corollary 4.9(a) X has the MWAP if and only if K∗(X, 1) ⊂
F∗(X, 1)

weak∗o
= F(X∗, 1)

weak∗o
. Hence (e) follows. ¤
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