DOI QR코드

DOI QR Code

Catalytic Conversion of 1,2-Dichlorobenzene Using V2O5/TiO2 Catalysts by a Thermal Decomposition Process

기상고온합성 V2O5/TiO2 촉매에 의한 1,2-Dichlorobenzene 제거 특성

  • Chin, Sung-Min (Environment & Process Technology Division, KIST) ;
  • Jurng, Jong-Soo (Department of Mechanical Engineering, Graduate School of Hanyang University) ;
  • Lee, Jae-Heon (Department of Mechanical Engineering, Hanyang University)
  • 진성민 (한국과학기술연구원 환경공정연구부) ;
  • 정종수 (한양대학교 대학원 기계공학과) ;
  • 이재헌 (한양대학교 공과대학 기계공학부)
  • Published : 2008.11.30

Abstract

This study examined the catalytic destruction of 1,2-dichlorobenzene on ${V_2}{O_5}/TiO_2$ nanoparticles. The ${V_2}{O_5}/TiO_2$ nanoparticles were synthesized by the thermal decomposition of vanadium oxytripropoxide and titanium. The effects of the synthesis conditions, such as the synthesis temperature and precursor heating temperature, were investigated. The specific surface areas of ${V_2}{O_5}/TiO_2$ nanoparticles increased with increasing synthesis temperature and decreasing precursor heating temperature. In addition, the removal efficiency of 1,2-dichlorobenzene was promoted by a decrease in heating temperature. However, the removal efficiency of 1,2-dichlorobenzene was decreased by an anatase to rutile phase transformation at temperatures $1,300^{\circ}C$.

Keywords

References

  1. Olie K., Vermeulen P. L., Hutzinger O., 1977, Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in The Netherlands. Chemosphere, 6, 455-459 https://doi.org/10.1016/0045-6535(77)90035-2
  2. Katami T., Yasuhara A., Okuda T., Shibamoto T., 2002, Formation of PCDDs, PCDFs, and Coplanar PCBs from Polyvinyl Chloride during Combustion in an Incinerator, Environ. Sci.Technol., 36, 1320-1324 https://doi.org/10.1021/es0109904
  3. Shin D. H., Choi S. M., Oh J. E., Chang, Y. S., 1999, Evaluation of Polychlorinated Dibenzo-p- dioxin/ Dibenzofuran (PCDD/F) Emission in Municipal Solid Waste Incinerators, Environ. Sci. Technol., 33, 2657-2666 https://doi.org/10.1021/es980932r
  4. Finocchio E., Busca G., Notaro M., 2006, A review of catalytic processes for the destruction of PCDD and PCDF from waste gases, Appl. Catal. B 62, 12-20 https://doi.org/10.1016/j.apcatb.2005.06.010
  5. Liljelind P., Unsworth J., Maaskant O., Marklund S., 2001, Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction, Chemosphere, 42, 615-623 https://doi.org/10.1016/S0045-6535(00)00235-6
  6. Goemans M., Clarysse P., Joannès J., Clercq P. D., Lenaerts S., Matthys K., Boels K, 2004, Catalytic NOx reduction with simultaneous dioxin and furan oxidation, Chemosphere, 54, 1357-1365 https://doi.org/10.1016/S0045-6535(03)00255-8
  7. Chung K. S., Jiang Z., Gill B. S., Chung J. S., 2002, Oxidative decomposition of o-dichlorobenzene over $V_2O_5/TiO_2$ catalyst washcoated onto wire-mesh honeycombs, Appl. Catal. A 237, 81-89 https://doi.org/10.1016/S0926-860X(02)00303-4
  8. Cho C. H., Ihm C. K., 2002, Development of New Vanadium-Based Oxide Catalysts for Decomposition of Chlorinated Aromatic Pollutants, Environ. Sci. Technol., 36, 1600-1606 https://doi.org/10.1021/es015687h
  9. Lee J. E., Jurng J. S., 2008, Catalytic Conversions of Polychlorinated Benzenes and Dioxins with Lowchlorine Using $V_2O_5/TiO_2$, Catal. Lett., 120, 294-298 https://doi.org/10.1007/s10562-007-9283-6
  10. Stark W. J., Wegner K., Pratsinis S. E., Baiker A., 2001, Flame Aerosol Synthesis of Vanadia-Titania Nanoparticles: Structural and Catalytic Properties in the Selective Catalytic Reduction of NO by $NH_3$, J. Catal., 197, 182-191 https://doi.org/10.1006/jcat.2000.3073
  11. Nakaso K., Han B., Ahn K. H., Choi M., Okuyama K., 2003, Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapor deposition (ES-CVD) method, J. Aerosol Sci., 34, 869-881 https://doi.org/10.1016/S0021-8502(03)00053-3
  12. 배귀남, 현정은, 이태규, 정종수, 2004, 튜브 전기로를 이용한 $TiO_2$ 나노입자의 합성 및 특성 분석, 한국대기환경학회지, 20(3), 411-419
  13. 이교우, 이승복, 정종수, 배귀남, 2005, 수소 확산화염에서 화염온도가 $TiO_2$ 나노입자의 합성에 미치는 영향, 대한기계학회 논문집 B권, 29(9), 1013-1021
  14. Jossen R., Heine M. C., Pratsinis S. E., Augustine S. M., Akhtar M. M., 2007, Thermal stability and catalytic activity of flame-made silica- vanadia-tungsten oxide-titania, Appl. Catal. B 69, 181-188 https://doi.org/10.1016/j.apcatb.2006.06.018
  15. Nova I., dall'Acqua L., Lietti L., Giamello E., Forzatti P., 2001, Study of thermal deactivation of a de-NOx commercial catalyst, Appl. Catal. B 35, 31-42 https://doi.org/10.1016/S0926-3373(01)00229-6
  16. Akhtar M. K., Xiong Y., Pratsinis S., 1991, Vapor synthesis of titania powder by titanium tetrachloride oxidation, AIChE J. 37, 1561-1570 https://doi.org/10.1002/aic.690371013
  17. 이정빈, 이인영, 김동화, 엄희문, 지평삼, 추수태, 남인식, 1999, 국내 안료용 타이타니아를 담체로 이용한 $V_2O_5/TiO_2$촉매상에서 질소산화물 제거활성, 한국대기환경학회지, 15(6), 791-797
  18. 최상기, 최성우, 2006, Mn-$V_2O_5/TiO_2$촉매의 $NH_3$에 의한 NO의 선택적 촉매환원, 2006, 한국환경과학회지, 15(4), 333-340 https://doi.org/10.5322/JES.2006.15.4.333
  19. 황택성, 박명규, 이영우, 우희권, 2003, $NO_x$ 제거용 $V_2O_5/TiO_2$촉매 활성에 관한 연구, 한국공업화학회, 14(2), 202-207