Using Contour Matching for Omnidirectional Camera Calibration

투영곡선의 자동정합을 이용한 전방향 카메라 보정

  • 황용호 (중앙대학교 첨단영상대학원 영상학과) ;
  • 홍현기 (중앙대학교 첨단영상대학원 영상학과)
  • Published : 2008.11.25

Abstract

Omnidirectional camera system with a wide view angle is widely used in surveillance and robotics areas. In general, most of previous studies on estimating a projection model and the extrinsic parameters from the omnidirectional images assume corresponding points previously established among views. This paper presents a novel omnidirectional camera calibration based on automatic contour matching. In the first place, we estimate the initial parameters including translation and rotations by using the epipolar constraint from the matched feature points. After choosing the interested points adjacent to more than two contours, we establish a precise correspondence among the connected contours by using the initial parameters and the active matching windows. The extrinsic parameters of the omnidirectional camera are estimated minimizing the angular errors of the epipolar plane of endpoints and the inverse projected 3D vectors. Experimental results on synthetic and real images demonstrate that the proposed algorithm obtains more precise camera parameters than the previous method.

감시 및 로보트 분야 등에서 다양하게 사용되는 전방향(omnidirectional) 카메라 시스템은 넓은 시야각을 제공한다. 전방향 카메라의 사영모델과 외부변수를 추정하는 대부분의 기존 연구에서는 사전에 설정된 영상 간의 대응관계를 가정한다. 본 논문에서는 두 장의 전방향 영상으로부터 투영곡선을 자동으로 정합하여 카메라의 외부변수를 추정하는 새로운 알고리즘이 제안된다. 먼저 두 영상에서 대응되는 특징점으로부터 에피폴라 구속조건을 계산하여 초기 카메라 변수를 계산한다. 검출된 특징점과 투영곡선을 대상으로 능동적(active) 정합방법으로 대응관계를 결정한다. 최종 단계에서 대응 투영곡선을 구성하는 양 끝점의 에피폴라(epipolar) 평면과 3차원 벡터의 각도 오차를 최소화하는 카메라 변수를 추정한다. 합성영상과 어안렌즈(fisheye lens)로 취득된 실제 영상을 대상으로 제안된 알고리즘이 기존 방법에 비해 카메라의 외부변수를 정확하게 추정함을 확인하였다.

Keywords

References

  1. C. Brauer-Burchardt and K. Voss, "A new algorithm to correct fish-eye and strong wide-angle-lens-distortion from single images," Proc. ICIP, pp. 225-228, 2001
  2. A. Basu and S. Licardie, "Alternative models for fish-eye lenses," Pattern Recognition Letters, vol. 16, pp. 433-441, 1995 https://doi.org/10.1016/0167-8655(94)00115-J
  3. Y. Xiong and K. Turkowski, "Creating image based VR using a self-calibrating fisheye lens," Proc. of Computer Vision and Pattern Recognition, pp. 237-243, 1997
  4. S. Shah and J. Aggarwal, "Intrinsic parameter calibration procedure for a (high distortion) fish-eye lens camera with distortion model and accuracy estimation," Pattern Recognition, vol. 29, no. 11, pp. 1775-1788, 1996 https://doi.org/10.1016/0031-3203(96)00038-6
  5. H. Bakstein and T. Pajdla, "Panoramic mosaicing with a $180^{\circ}$ field of view lens," Proc. IEEE Workshop on Omnidirectional Vision, pp. 60-67, 2002
  6. D. Claus and A. W. Fitzgibon, "A rational function lens distortion model for general cameras," Proc. CVPR, pp. 213-219, 2005
  7. J. P. Barreto and K. Daniilidis, "Fundamental matrix for cameras with radial distortion," Proc. ICCV, pp. 625-632, 2005
  8. J. Kannala and S. S. Brandt, "A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 28, no. 8, pp. 1335-1340, 2006 https://doi.org/10.1109/TPAMI.2006.153
  9. S. Thirthala and M. Pollefeys, "Multi-view geometry of 1D radial cameras and its application to omnidirectional camera calibration," Proc. ICCV, pp. 1539-1546, 2005
  10. B. Micusik, "Two-view geometry of omnidirectional cameras," PhD. Thesis, Czech Technical University, 2004
  11. I. Sato, Y. Sato, and K. Ikeuchi, "Acquiring a radiance distribution to superimpose virtual objects onto a real scene," IEEE Trans. on Visualization and Computer Graphics, Vol. 5, no. 1, pp. 1-12. 1999 https://doi.org/10.1109/2945.764865
  12. C. G. Harris and M. J. Stephens, "A combined corner and edge detector," Proc. 4th Alvey Vision Conference, pp. 147-151, 1988
  13. J. Canny, "A computational approach to edge detection," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 8, no. 6, pp. 679-698, 1986 https://doi.org/10.1109/TPAMI.1986.4767851
  14. K. Wall and P. Danielson, "A fast sequential method for polygonal approximation of digital curves," Computer Vision, Graphics Image Process, Vol. 28, pp. 220-227, 1984 https://doi.org/10.1016/S0734-189X(84)80023-7
  15. F. Devernay and O. Faugeras, "Straight lines have to be straight," Machine Vision and Applications, Vol. 13, no. 1, pp. 14-24, 2001 https://doi.org/10.1007/PL00013269
  16. C. Schmid and A. Zisserman, "Automatic line matching across views," Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 666-672, 1997
  17. J. Han and J. Park, "Contour matching using epipolar geometry," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, no. 4, pp. 358-370, 2000 https://doi.org/10.1109/34.845378
  18. Z. Zhang, R. Deriche, O. Faugeras and Q. Loung, "A robust technique for matching two uncalibrated images through the recover of the unknown epipolar geometry," Artificial Intelligence Journal, Vol. 78, pp. 87-119, 1995 https://doi.org/10.1016/0004-3702(95)00022-4
  19. T. Svoboda and T. Pajdla, "Matching in catadioptric images with appropriate windows, and outliers removal," Proc. 9th Int. Conf. Computer Analysis of Images and Patterns, pp. 733-740, 2001 https://doi.org/10.1007/3-540-44692-3_88
  20. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge Univ., 2000
  21. http://www.ignorancia.org