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Abstract1)

This paper proposes a scheme to estimate the technical efficiency of energy consumption 
and production and shadow prices of CO2 emission in country-level at Asia Pacific countries 
by Data Envelopment Analysis (DEA). The result of technical efficiency estimation shows 
that there exists an heterogeneity and a substantial opportunity for improvement in technical 
efficiency at energy consumption and production across countries, specially in the CO2 emis-
sion, which implies that more pollutant are spread in air. Each country will have the differ-
ent willingness to pay for the additional CO2 emission right and this result enables us to 
predict the competition in international CO2 emission right market.

1. Introduction

The possibility of regulatory control of particular inputs or outputs of industries is an im-
portant concern in most sectors of current economy. In the case where a private good tech-
nology interacts with public or quasi-public inputs or outputs, it is often in the social inter-
est to control that interaction to achieve social goals that deviate from the industry’s private 
goals. In the case of energy industry, the environmental impacts of the use of fossil fuels to 
generate energy for industries or individuals are an important case where applications may 
contribute to good objectives such as generating electricity while generating pollutants such 
as CO2 emissions. In this paper, explored is the utility of nonparametric approaches such as 
Data Envelopment Analysis (DEA) to estimate the social cost of regulatory changes in input 
utilization. 

Farrell (1957) initially claimed that evaluation of efficiency is useful for decision making 
units (DMUs) because it provides information on how much a DMU can decrease input with-
out decreasing output (with keeping current output). Equivalently, technically inefficient DMUs 
can be brought towards efficiency by cutting down overused inputs. Trucks (DMUs) can al-
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so reduce the overused inputs (Bad performance) and truck owners evaluate their trucks rea-
sonably through the evaluation of technical efficiency. As the approach to evaluate the tech-
nical efficiency, Data Envelopment Analysis (DEA) is employed in this paper because it 
does not require the assumption of the functional specification between input factors and 
output factors and also includes multiple outputs unlike stochastic frontier model (SFM). 
Data for empirical analysis in this paper come from a survey to truck drivers.

As past work has shown, where firms are inefficient in their use of polluting inputs, the 
private costs of regulation may be much smaller that implied by similar reduction in use by 
firms that are efficient in their current use of those inputs, see e.g. Piot-Petite et al. (1998) 
The approaches in this paper are to develop estimates of shadow prices that are conditioned 
on the possibility of inefficient use of the regulated input and to calculate the relevant social 
cost of additional use of the regulated input among Asian Pacific countries. 

The utility of DEA for estimation of the impacts of regulation has been explored in a 
stream of past literature. Haynes et al. (1994) used DEA to examine whether pollution pre-
vention is successful or not. They did not use the shadow prices but use only the efficiency 
values. They tried to find the opportunity of improvement in polluting input use. Coggins 
and Swinton (1996) and Swinston (1998) provides estimates of the shadow price of SO2 
abatement using the output distance function approach for coal-burning electric plants. He es-
timated the radial efficiency of each firm, measured the relative distance of each firm from 
efficient frontier, and calculated the shadow prices of each firm. The shadow price means 
the marginal value of the electricity foregone as resources go to reducing SO2 emissions by 
one unit. In other point of view, the allowance of one unit from current amount has the 
value of the shadow price-that is, a firm is willing to pay the shadow price for the allow-
ance of one unit. Lee and Kang (2002) made a replica of Swinton paper for Korean elec-
tricity plants.

The approach of this paper is quite different from the above papers in that this paper fo-
cuses on the consumption of energy as well as the production of it and on the energy con-
sumption and production of countries rather than power plants and employs DEA directly to 
estimate the shadow price of the regulated input. Thus, this paper will be the first paper 
which tries to evaluate technical efficiency at the energy consumption and production of the 
country level and to calculate the social cost generated through energy production and 
consumption. 

2. Theoretical Backgrounds 

Shadow prices are values that are used largely following the Linear Programming (LP). 
The notion of a shadow price emerges from elementary microeconomic theory as the mar-
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ginal value of relaxing a constraint faced by a DMU. The value of the marginal change in 
the constraint is measured by the DMU’s objective that states the value to the DMU of the 
productivity of the constrained control variable. Within the context of a regulated DMU, reg-
ulation might place a constraint on the use of a polluting input. In this case, the impact of 
that constraint on the DMU is the discrete change in the DMU’s objective induced by the 
discrete change from current use to the use of regulated input. In a traditional profit max-
imization problem where the firm manages a vector of outputs (y) by applying a vector of 
variable inputs (x) and use of the regulated input (z), the unregulated DMU would proceed 
with a production plan (y*, x*, z*) that maximizes profits (π* = π(y*, x*, z*)). In contrast, 
when z is regulated such that z < zg, the DMU’s maximum profits are πg = π(y*, x*, zg) 
where πg < π* and R = π* - πg is the regulation cost to the DMU. In the short-run, where 
z* represents optimal use and where technical efficiency exists, R > 0. Where the DMU is 
technologically inefficient in its use of z, e.g. using a production plan (y*, x*, z’) where z’ 
> z*, then π’ = π(y*, x*, z’) > π* and the possibility π’ < πg is admitted. In this case, as 
Piot-Petit, et al., noted, a free lunch occurs as a result of regulation. 

A similar logic is applied for marginal regulatory adjustments in use of a regulated input. 

In general, the change in profits can be measured as  

  where the change in z is 

measured from the initial level. However, when the DMU is inefficient, 

  must be 

measured by ′ whereas when the firm is efficient, it is 

    , which 

is interpreted as the shadow price of the marginal regulatory constraint on z.
In order to estimate the shadow price of the regulated input through DEA, it should be 

noted that the implications for the measurement of technical efficiency were recognized by 
Farrell (1957) and Charnes et al. (1978). The input based measures of Farrell can be de-
fined for a set of N firms (n = 1, …, N), a vector of variable inputs (x) into a vector of 
outputs (y). The production possibilities set for a DMU which is evaluated firm can be writ-
ten as the following piece-wise linear technology:

  ≥ 




  ≤ 




 




   ∈ (1)

where    ……   is the intensity vector with elements indicate the intensity with which 
each DMU’s production plan is taken into account in the construction of the technology 
frontier (Cooper et al., 2000). From equation (1), input-oriented technical efficiency is de-
fined for the DMU (n0) as follows.
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Output-oriented technical efficiency is defined for the DMU (n0) as follows.
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The above equations illustrate the DEA models developed by Banker et al. (1984), assum-
ing the variable returns to scale (VRS) and strong disposability. Input-oriented efficiency 
gives us the information on how much of inputs can be reduced by, keeping current output 
level while output-oriented efficiency gives us the information on how much of outputs can 
be reduced by, keeping current input level. 

It is possible to obtain the shadow price of the regulated input by tallying the shadow 
price information for the regulated input after running the above DEA formulations. 
However, since the shadow prices from them are expressed by efficiency score rather than 
by monetary value or utility, they could not be interpreted as the ‘real’ shadow price of the 
regulated input which indicates the social cost of the input. Nonetheless, they are important 
because they are used to calculate the ‘real’ shadow prices.

Following the paper of LePetit et al. (1998), a method of calculating the ‘real’ shadow price 
of the regulated input in monetary value is presented. It is possible to write the technical efficiency 

measure in terms of input-output subvector distance function:    
 , where 

   is the radial technical efficiency measure of each firm. From this, the ratio of shadow 
prices between input factor and output factor is computed as:

( , )

( , )
i

k

n
x i

ny
j

d x y shadow price of inputp x
d x yp shadow price of outputy

∂ =∂
=
∂ =∂ , where pxi is the ‘real’ shadow price of ith input and pyj 

is the ‘real’ shadow price of jth output. In other words, the ratio of ‘real’ shadow prices of ith 
input and to the ‘real’ shadow price of jth output factor is equal to that of shadow prices estimated 
by DEA. Therefore, if it is assumed that the price of jth output is known and known to equal 
its ‘real’ shadow price, then calculate calculate the ‘real’ shadow price of ith input. 

3. Data and Empirical Issues

The data on the 2004 energy production and consumption in Asia Pacific countries were 
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collected from ‘2007 Overseas Electric Power Industry Statistics’ prepared by Korea Electric 
Power Corporation. The size of sample is 35 that are located in Asia and Pacific area. 

The model for efficiency evaluation is specified with four output categories (electricity 
consumption, petroleum consumption, natural gas consumption, and coal consumption) and 
three input factors (CO2 emission, Total energy production, and net energy export). Output 
factors indicate how much energy elements have been consumed in each country and input 
factors indicate how much energy has been produced. Therefore, the mail points are to ex-
amine how much energy was produced and how much CO2 was emitted to consume how 
much energy elements and to calculate how much the reduction of CO2 emission costs 
socially. 

Table 1 illustrates the summary of data for all samples.

Table 1. Summary of data for sample

Variables N Min Max Mean Standard 
Deviation

CO2 emission (Mega tons) 35 3.66 5799.97 580.89 1257.97
Energy production (Mtoe) 35 0.00 1641.04 250.19 429.81
Net export (Mtoe) 35 -714.51 521.00 -11.58 216.69
Electricity consumption (Tera Wh) 35 0.94 3920.61 342.25 747.80
Petroleum consumption (Mtoe) 35 3.30 937.60 79.45 164.62
Natural gas consumption (Mtoe) 35 0.00 582.00 55.34 127.03
Coal consumption (Mtoe) 35 0.00 956.90 68.92 185.77

4. Results and Discussion

Both input-oriented and output-oriented technical efficiency for 35 countries has been evaluated. 
The interpretation of input-oriented technical efficiency is that keeping current consumption 
of energy elements (electricity, petroleum, natural gas, and coal) can reduce energy pro-
duction, total export, and CO2 emission by the ratio of (1-technial efficiency score). The in-
terpretation of output-oriented technical efficiency is that keeping current energy production, 
total export, and CO2 emission can increase the consumption of energy elements (electricity, 
petroleum, natural gas, and coal) by the ratio of (technical efficiency score-1). 

The summary of technical efficiency evaluation in Table 2 and Table 3 shows the hetero-
geneity in efficiency of energy consumption and production across countries, substantial op-
portunity for improvement, and, as the result, the possibility for reduction of CO2 emission. The 
heterogeneity is shown by the results that the ranges of input-oriented efficiency are 52.11% 
(1-0.4789) and those of output-oriented efficiency is 138.37% (2.3837-1) These results imply 
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that countries are producing more energy than what they consume and emit more CO2 than 
what they need and reversely they should consume more energy under current energy pro-
duction

For improvement opportunity, countries will be able to improve their input-oriented effi-
ciency by 8.73%, 40.78%, and 74.29% averagely for CO2 emission, energy production, and 
net export, respectively. Countries will also be able to improve their output-oriented effi-
ciency by 16.58%, 72.32%, 43.36%, and 118.19% averagely for electricity consumption, pe-
troleum consumption, natural gas consumption, and coal consumption, respectively. 

Table 2. Summary of results from radial technical efficiency evaluation 

Input-oriented radial Output-oriented radial

Average efficiency 0.8968 1.1477
# of efficient centers 19 19
% of efficient centers 54.29% 54.29%
Min. (Max) efficiency 0.4789 2.3837

Table 3. Summary of results from nonradial technical efficiency evaluation 

CO2 
emission

Energy 
production

Net 
export

Electricity 
consumption

Petroleum 
consumption

N atural gas 
consumption

Coal con-
sumption

Average effi-
ciency 0.9127 0.5922 0.2571 1.1658 1.7232 1.4336 2.1819

# of efficient 
centers 20 16 9 27 20 26 20

% of effi-
cient centers 57.14% 45.71% 25.71

% 77.14% 57.14% 74.29% 57.14%

Minimum ef-
ficiency 0.4789 0.3541 0.0000 27.31% 63.21% 39.81% 20.50%

Table 4 shows the result of calculating the shadow price of CO2 emission for each coun-
try with respect to the electricity price. Among 35 countries, since 2004 electricity price of 
only 18 is available, the below table has the shadow price information for them. ‘NA’ in-
dicates the case that the shadow price of electricity consumption is zero. The values in the 
table indicate the marginal cost when CO2 emission is reduced. In other words, they indicate 
the willingness of each country to pay for the right of the one more ton of CO2 emission. 
As shown in Table 4, country 29, 20, 1 and 3 have large willingness to additional emission 
right. They consist of Turkey, Japan, Former USSR, and Chinese Taipei. In addition, United 
States, Ecuador, and Korea etc. have the large willingness to pay. This result enables us to 
predict a tough competition to get more CO2 emission rights at cheaper price and empha-



120 Efficiency at Energy Industry

sizes the importance of the information on the willingness of other countries. 

Table 4. The result of ‘real’ shadow price estimation for CO2 emission

ID
Electricity 
Price (US 
cent/kWh)

Shadow Price for CO2 emission (USD/ton)

Input-oriented
Radial

Output-oriented
Radial

Input-oriented
Nonradial

Output-oriented
Nonradial

1 12 NA NA NA 610.2
2 12 NA 117.6 NA 0.00
3 8 101.1 86.9 20.8 468.5
5 9 NA NA NA 154.9
6 9 NA NA 1.8 229.4
8 5 66.1 115.5 140.4 115.3
9 9 135.4 91.9 264.9 113.9
13 4 57.2 57.2 51.1 71.7
14 13 150.2 159.8 15.9 290.1
15 10 110.3 109.8 2830.2 283.9
18 4 45.3 45.3 NA 174.3
20 20 0.0 154.9 NA 920.1
22 9 83.2 83.2 52.4 118.0
23 3 NA NA NA 72.4
25 7 304.6 63.7 27.7 87.2
26 8 98.7 98.7 84.0 174.8
29 11 NA NA NA 5216.2
32 11 132.6 132.6 5783.7 199.4
34 8 114.1 141.7 NA 202.5

5. Conclusion

This paper deals with topic how to evaluate the performance of Asian Pacific countries at 
ensergy consumption and production. Main contribution of this paper is to estimate the tech-
nical efficiency and willingness to pay for additional CO2 emission right for country level 
not firm level. Technical efficiency based on production function of energy production and 
consumption was chosen as the performance measure and DEA was implemented in order to 
estimate technical efficiency. As the result, it was possible to confirm some meaningful find-
ings and get some important intuition. 

Asia Pacific countries show the substantial heterogeneity in technical efficiency. While 
some countries are efficient, others are inefficient by considerable amount. Also, the scale 
and type of inefficiency is different among countries. More important thing is that each coun-
try has the heterogeneous willingness to pay for the additional CO2 emission right. 
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