DOI QR코드

DOI QR Code

농촌유역에서의 초기강우손실 특성분석과 계수 산정식 개발 - 금강.삽교천 중소유역을 중심으로-

Characteristic Analysis of the Coefficient of Initial Abstraction and Development of its Formular in the Rural Watersheds - for the Small-Medium Watersheds in the Geum and Sapkyo River -

  • 김태철 (충남대학교 생물자원공학부) ;
  • 이정선 (경기도 화성시청 지역개발과)
  • 발행 : 2008.11.30

초록

It is important to estimate accurate effective rainfall to analyse flood flow and long-term runoff for the rational planning, design, and management of water resource. The initial abstraction is also important to estimate effective rainfall. The Soil Conservation Service (SCS) has developed a procedure and it has been most commonly applied to estimate effective rainfall. But the SCS method still has weak points, because of unnatural assumptions such as antecedent moisture conditions and initial abstraction. The coefficient of initial abstraction(K) is depending on the soil moisture condition and antecedent rainfall. The maximum storage capacity of Umax which is calibrated by stream flow data in the proposed watershed was derived from the DAWAST(DAily WAtershed STreamflow) model. The values of K obtained from 69 storm events at the five watersheds are ranging from 0.133 to 0.365 and its mean value is 0.207. Effective rainfall could be estimated more reasonably by introducing new concept of initial abstraction. The equation of $K=0.076Sa^{0.255}$ was recommended instead of 0.2 and it could be applicable to the small-medium rural watersheds.

키워드

참고문헌

  1. 김종덕, 1989, SCS법에 의한 소유역의 홍수유출추정, 서울대학교 대학원 석사학위논문
  2. 김점균, 1984, 하천유역에서의 유출해석을 위한 유효우량 결정 모델에 관한 연구, 영남대학교 대학원 석사학위논문
  3. 김태철, 1988, 한국하천의 일 유출량 추정을 위한 지역화 모형, 충남대학교 농업과학연구소
  4. 김태철, 박승기, 1996, 한국하천의 일 유출량 모형(DAWAST model), 한국수자원학회 29(5), pp.223-234
  5. 김태철, 1997, DAWAST모형을 이용한 유출곡선번호 추정, 한국수자원학회 30(5), pp.423-429
  6. 이동현, 2002, 유효우량 산정시 유역토양수분량을 고려한 초기손실추정, 충남대학교 대학원 석사학위논문
  7. 이정선, 2004, DAWAST 모형에서 유역토양 수분량을 고려한 초기손실산정, 충남대학교 대학원 석사학위논문
  8. 윤태훈, 1991, 유효우량 산정을 위한 곡선번호 방법의 적용성, 한국수문학회지, 24(2), pp.97-108
  9. 조홍제, 김정식, 1997, TIN을 이용한 SCS법에 의한 유효강우량 산정에 관한 연구, 한국수자원학회지 30(4), pp.357-366
  10. Soil Conservation Service, 1972, National Engineering Handbook, section 4, Hydrology, USDA
  11. Soil Conservation Service, 1986, Urban hydrology for small watershed, TR-55
  12. Aron G., 1977, Infiltration model based on SCS curve number, ASCE, J. of irrigation and drainage, Vol.103, No. IR4
  13. Gray, D. D., et. al. 1981, Antecedent moisture condition probabilities, ASCE, J. of Irrigation and Drainage Engineering, 108(IR2), pp.107-114
  14. Hawkins R. H. et. al., 1985, Runoff probability, storm depth, and curve numbers, ASCE, J. of Irrigation and Drainage Engineering, 111(4), pp.330-340 https://doi.org/10.1061/(ASCE)0733-9437(1985)111:4(330)
  15. Bosznay, M., 1989, Generaization of SCS curve number method, ASCE, J. of Irrigation and Drainage Engineering, 115(1), pp.139-144 https://doi.org/10.1061/(ASCE)0733-9437(1989)115:1(139)
  16. Hjelmfelt, A. T. Jr., 1980, Curve-number procedure as infiltration method, ASCE Vol 106, No. HY6
  17. Hjelmfelt, A. T. Jr., 1975, Hydrology for engineers and planners, Iowa State University Press, Ames, Iowa, USA
  18. Rallison R. E. and Miller N, 1982, Past, present, and future SCS runoff procedure, Water Resources Publication edited by V. P. Singh
  19. Bales J. and Betson R. P. 1982, The curve number as a hydrologic index, Water Resources Publication edited by V. P. Singh