DOI QR코드

DOI QR Code

열전지용 용융염 전해질의 유리필터분리판의 담지특성

The Holding Characteristics of the Glass Filter Separators of Molten Salt Electrolyte for Thermal Batteries

  • 조광연 (요업기술원 나노소재응용본부) ;
  • 류도형 (요업기술원 나노소재응용본부) ;
  • 허승헌 (요업기술원 나노소재응용본부) ;
  • 신동근 (요업기술원 나노소재응용본부) ;
  • 김현이 (서울대학교 재료공학부) ;
  • 정해원 (국방과학연구소 제4기술연구본부) ;
  • 조성백 (국방과학연구소 제4기술연구본부)
  • 발행 : 2008.08.31

초록

The electrolyte separator for thermal battery should be easily handled and loaded a large amount of the molten salt. Ceramic fibers, especially fibrous commercial glass filters were used as an electrolyte separator and the lithium based molten salts were infiltrated into the ceramic filters. The pore structures of the ceramic filter and the melting properties of the lithium salts affected to the electrolyte loading and leakage. During the infiltration, ions of $Li^+$ and $F^-$ in the molten salts were reacted with the glass fiber and caused to be weaken the fiber strength.

키워드

참고문헌

  1. P. Masset, S. Schoeffert, J. Y. Poinsoa, and J. C. Poignetc, "Retained Molten Salt Electrolytes in Thermal Batteries," J. Power Sources, 139 356-65 (2005) https://doi.org/10.1016/j.jpowsour.2004.07.009
  2. J.-S. Kim, W.-Y. Yoon, and K. S. Yoo, "Enhancement of the Cell Performance for an Carbon Anode in Li-ion Battery(in Korean)," J. Kor. Ceram. Soc., 38 [8] 755-60 (2001)
  3. R.A. Guidotti, F.W. Reinhardt, J. Daib, and D.E. Reisner, "Performance of Thermal Cells and Batteries Made with Plasma-sprayed Cathodes and Anodes," J. Power Sources, 160 1456-64 (2006) https://doi.org/10.1016/j.jpowsour.2006.02.025
  4. R. A. Guidotti and P. Masset, "Thermally Activated ("Thermal") Battery Technology Part I: An Overview," J. Power Sources, 161 1443-49 (2006) https://doi.org/10.1016/j.jpowsour.2006.06.013
  5. P. Masset and R. A. Guidotti, "Thermal Activated (Thermal) Battery Technology Part II. Molten Salt Electrolytes," J. Power Sources, 164 397-414 (2007) https://doi.org/10.1016/j.jpowsour.2006.10.080
  6. P. Singh, R. A. Guidotti, and D. Reisnerc, "Ac Impedance Measurements of Molten Salt Thermal Batteries," J. Power Sources, 138 323-26 (2004) https://doi.org/10.1016/j.jpowsour.2004.06.038
  7. P. Butler, C. Wagner, R. Guidotti, and I. Francis, "Long-life, Multi-tap Thermal Battery Development," J. Power Sources, 136 240-45 (2004) https://doi.org/10.1016/j.jpowsour.2004.03.034
  8. R. A. Guidotti, F. W. Reinhardt, J. Daib, and D. E. Reisner, "Performance of Thermal Cells and Batteries Made with Plasma-sprayed Cathodes and Anodes," J. Power Sources, 160 1456-64 (2006) https://doi.org/10.1016/j.jpowsour.2006.02.025
  9. P. Masset, "Iodide-based Electrolytes: A Promising Alternative for Thermal Batteries," J. Power Sources, 160 688-97 (2006) https://doi.org/10.1016/j.jpowsour.2005.12.091
  10. J. Saunier, F. Alloin, J. Y. Sanchez, and L. Maniguet, "Plasticized Microporous Poly(vinylidene fluoride) Separators for Lithium-Ion Batteries. III. Gel Properties and Irreversible Modifications of Poly(vinylidene fluoride) Membranes under Swelling in Liquid Electrolytes," J. Power Sources, 42 2308-17 (2004)

피인용 문헌

  1. -MWCNTs composite for thermal batteries vol.100, pp.10, 2017, https://doi.org/10.1111/jace.14991
  2. Poly(imide-co-siloxane) as a Thermo-Stable Binder for a Thin Layer Cathode of Thermal Batteries vol.11, pp.11, 2018, https://doi.org/10.3390/en11113154