Insecticidal Activity of Paecilomyces fumosoroseus SFP-198 as a Multi-Targeting Biological Control Agent against The Greenhouse Whitefly and The Two-Spotted Spider Mite

  • Kim, Jae-Su (AgroLife Research Institute (ARI), Dongbu HiTek Co. Ltd.) ;
  • Roh, Jong-Yul (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University) ;
  • Choi, Jae-Young (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Shin, Sang-Chul (Division of Forest Insect Pests and Diseases, Korea Forest Research Institute) ;
  • Jeon, Mun-Jang (Department of Forest Resources, College of Life and Environmental Science, Daegu University) ;
  • Je, Yeon-Ho (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University)
  • Published : 2008.12.31

Abstract

An entomopathogenic fungus, Paecilomyces fumosoroceus SFP-198 was isolated in Kyungbuk province, Korea and screened out for the control of Trialeurodes vaporariorum nymphs. It showed 72.5% efficacy against second instars of T. vaporariorum nymphs at 6 days after treatment in the laboratory. To select an active ingredient for the mass production and the formulation, SFP-198 culture products were compared based on their insecticidal activities against T. vaporariorum nymphs. Among them, conidia and blastospores showed much higher insecticidal activity than supernatants. Furthermore, SFP-198 conidia were more heat-resistant than blastospores, and also powder form of conidia was more stable than their suspension form. SFP-198 conidia showed high pathogenicity on not only T. vaporariorum but also Tetranychus urticae in the glasshouse. This result suggested that SFP-198 conidia can be used as a multi-targeting biological control agent against sucking agri- cultural pests, such as whiteflies and mites.

Keywords

References

  1. Altre, J. A. and J. D. Vandenberg (2001) Comparison of blastospores of two Paecilomyces fumosoroseus isolates: In vitro traits and virulence when injected into fall armyworm, Spodoptera frugiperda. J. Invertebr. Pathol. 78, 170-175 https://doi.org/10.1006/jipa.2001.5059
  2. Avery, P. B., J. Faull and M. S. J. Simmonds (2004) Effect of different photoperiods on the growth, infectivity and colonization of Trinidadian strains of Paecilomyces fumosoroseus on the greenhouse whitefly, Trialeurodes vaporariorum, using a glass slide bioassay. J. Insect Sci. 4, 38-48
  3. Bartlett, M. C. and S. T. Jaronski (1988) Mass production of entomopathogenous fungi for biological control of insects; in fungi in biological control systems. Burge, M. N. (ed.), pp. 61-85. Manchester University Press, Manchester
  4. Bradley, C. A., W. E. Black, R. Kearns and P. Wood (1992) Role of production technology in mycoinsecticide development; in Frontiers in industrial mycology. Leatham, G. F. (ed.), pp. 160-173, Chpman and Hall, New York
  5. Burges, H. D. (1998) Formulation of microbial biopesticies: beneficial microorganisms, nematodes and seed treatment. Kluwer Academic, Dordrecht
  6. Campos, R. A., W. Arruda, J. T. Boldo, M. V. Silvia, N. M. Barros, J. L. Azedevo, A. Schrank and M. H. Vainstein (2005) Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr. Microbiol. 50, 257-261 https://doi.org/10.1007/s00284-004-4460-y
  7. Chandler, D., J. B. Heale and A. T. Gillespie (1993) Germination of the entomopathogenic fungus Verticillium lecanii on scales of the glasshouse whitefly Trialeurodes vaporariorum. Biocontrol Sci. Technol. 3, 161-164 https://doi.org/10.1080/09583159309355272
  8. Charnley, A. K. (1997). Entomopathogenic fungi and their role in pest control, in the Mycota IV environmental and microbial relationships. Wicklow, D. T. and B. E. Soderstrom (eds.), pp. 185-201, Springer, Berlin
  9. Clarkson, J. M. and A. K. Charnley (1996) New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol. 4, 197-203 https://doi.org/10.1016/0966-842X(96)10022-6
  10. Dunlap, C. A., G. Biresaw and M. A. Jackson (2005) Hydrophobic and electrostatic cell surface properties of blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus. Colloids Surf. Biointerfaces 46, 261-266 https://doi.org/10.1016/j.colsurfb.2005.11.014
  11. Fan, Y., W. Fang, S. Guo, X. Pei, Y. Zhang, Y. Xiao, D. Li, K. Jin, M. J. Bidochka and Y. Pei (2007) Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl. Environ. Microbiol. 73, 295-302 https://doi.org/10.1128/AEM.01974-06
  12. Hall, R. A. (1981) The fungus Verticillium lecanii as a microbial insecticide against aphids and scales; in microbial control of pests and plant diseases 1970-1980. Burges, H. D. (ed.), pp. 483-498, Academic Press, London
  13. Hall, R. A. and B. Papierok (1982) Fungi as biological agents of arthropods of agricultural and medical importance. Parasitology 84, 205-240
  14. Hall, R. A., D. D. Peterkin, B. Ali and V. F. Lopez (1994) Influence of culture age on rate of conidiospore germination in four deuteromycetous entomogenous fungi. Mycol. Res. 98, 763-768 https://doi.org/10.1016/S0953-7562(09)81052-6
  15. Inglis, G. D., M. S. Goettel and D. L. Johnson (1993) Persistence of the entomopathogenetic fungus, Beauveria bassiana, on phylloplanes of crested wheatgrass and alfalfa. Biol. Control 3, 258-270 https://doi.org/10.1006/bcon.1993.1035
  16. Jenkins, N. E., G. Heviefo, J. Langewald, A. J. Cherry and C. J. Lomer (1998) Development of mass production technology for aerial conidia for use as mycoinsecticides. Biocontrol News and Information 19, 21-31
  17. Kassa, A., M. Brownbridge, B. L. Parker, M. Skinner, V. Gouli, S. Gouli, M. Guo, F. Lee and T. Hata. (2008) Whey for mass production of Beauveria bassiana and Metarhizium anisopliae. Mycol. Res. 112, 583-591 https://doi.org/10.1016/j.mycres.2007.12.004
  18. Lane, B. S., A. P. J. Trinci and A. T. Gillespie (1991) Endogenous reserves and survival of blastospores of Beauveria bassiana harvested from carbon and nitrogen limited cultures. Mycol. Res. 95, 821-828 https://doi.org/10.1016/S0953-7562(09)80045-2
  19. Lee, I. K., H. J. Shim, S. D. Woo, Y. H. Je, Z. Yang and S. K. Kang (1999) Variations in growth and pathogenicity of Beauveria bassiana and Paecilomyces fumosoroseus pathogenic to the pine gall midge, Thecodiplosis japonensis. J. Microbiol. Biotechnol. 27, 415-418
  20. Liu, H., M. Skinner, M. Brownbridge and B. L. Parker (2002) Characterization of Beauveria bassiana and Metarhizium anisopliae isolates for management of tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae). J. Invertebr. Pathol. 82, 139-147
  21. Maheshwari, R., G. Bharadwaj and M. K. Bhat (2000) Thermophilic fungi: Their physiology and enzymes. Microbiol. Mol. Biol. Rev. 64, 461-488 https://doi.org/10.1128/MMBR.64.3.461-488.2000
  22. Osborne, L. S. and Z. Landa (1992) Biological control of whiteflies with entomopathogenic fungi. Florida Entomologist 75, 456-471 https://doi.org/10.2307/3496127
  23. Parker, B. L., M. Skinner, S. D. Costa, S. Gouli, W. Reid and M. E. Bouhssini (2002) Entomopathogenic fungi of Eurygaster integriceps Puton (Hemiptera: Scutelleridae): collection and characterization for development. Biol. Control 27, 260-272 https://doi.org/10.1016/S1049-9644(03)00017-3
  24. Roberts, D. R. and A. E. Hajek. (1992) Entomopathogenic fungi as bioinsecticides; in frontiers in industrial mycology. Leatham, G. F. (ed.), pp. 144-159, Chapman and Hall, New York
  25. Roberts, W. K. and C. P. Selitrennikoff (1988) Plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol. 134, 169-176
  26. Sandoval-Coronado, C. F., H. A. Luna-Olvera, K. Arevalo- Nino, M. A. Jackson, T. J. Poprawski and L. J. Galan-Wong (2001) Drying and formulation of blastospores of Paecilomyces fumosoroseus (Hypomycetes) produced in two different liquid media. World J. Microbiol. Biotechnol. 17, 423-428 https://doi.org/10.1023/A:1016757608789
  27. Vidal, C., J. Fargues, L. A. Lacey and M. A. Jackson (1998) Effect of various liquid culture media on morphology, growth, propagule production, and pathogenic activity to Bemisia argentifolii of the entomopathogenic Hyphomycete, Paecilomyces fumosoroseus. Mycopathologia 143, 33-46 https://doi.org/10.1023/A:1006962808712
  28. Ying, S. H. and M. G. Feng (2004) Relationship between thermotolerance and hydrophobin-like proteins in aerial conidia of Beauveria bassiana and Paecilomyces fumosoroseus as fungal biocontrol agents. J. Appl. Microbiol. 97, 323-331 https://doi.org/10.1111/j.1365-2672.2004.02311.x