발색법에 의한 Peroxidase의 신속한 스크리닝법과 2, 4-DCP 분해균주의 스크리닝

Rapid Screening Method of Peroxidase by Colorimetric Assay and Screening of 2, 4-DCP Degradable Strains

  • 류강 (크레아젠 주식회사 단백질공학팀) ;
  • 이은규 (한양대학교 공학대학 화학공학과)
  • Ryu, Kang (Creagene Inc., Division of Protein Engineering) ;
  • Lee, Eun-Kyu (Department of Chemical Engineering, Hanyang University)
  • 발행 : 2008.12.31

초록

본 연구에서는 peroxidase 활성의 신속한 스크리닝을 위해 peroxidase의 활성을 정량적으로 평가할 수 있는 분석으로 agar plate와 96-well plate에서 peroxdase의 활성에 비례하여 색상감도를 측정할 수 있는 colorimetric 분석법을 개발하였다. 이 방법은 RP-HPLC 결과와 매우 비례적으로 상관적인 결과를 보였다. 이 colorimetric 분석법을 사용하여, 폐수에서 한천 고체배지에서 7회에 걸친 스크리닝으로 높은 농도의 2,4-DCP(1000 ppm)에서 생존하는 균주를 스크리닝하였고 선별된 이들 균주들은 탄소원으로 2,4-DCP 만을 대사할 수 있으며 높은 peroxidase 생산량을 보였다. 분리된 균주들 중 높은 peroxidase 활성을 가지는 2,4-DCP 분해 균주를 분리하였고 최종 분리된 균주는 염색폐수의 COD를 4시간 동안 44%에서 61%까지 제거하였다. 상기의 결과에 의해 본 연구에서 개발된 발색법이 페놀화합물 분해 균주 스크리닝법이 빠르고 쉬운 난분해성 물질인 페놀 혼합물의 분해 균주 탐색에 대하여 성공적으로 적용될 수 있기를 기대한다.

Chlorinated phenols are widely used by the chemical industry as intermediate products in synthesis and previously were frequently applied to various industry fields. Peroxidases catalyze the peroxide-dependent oxidation of a range of inorganic and organic compounds. Peroxidase was shown to mineralize a variety of recalcitrant aromatic compounds and to oxidize a number of polycyclic aromatic and phenolic compounds. Among monomeric phenolic and nonphenolic compounds, peroxidase is known to oxidize its compounds. In this study, a colorimetric assay was developed to quantitatively evaluate the peroxidase activity for rapid screening. Color products of different intensity were developed proportionally to the peroxidase activity on agar plate and 96-well plate. This method correlates well with the RP-HPLC result. Using this screening method, 12 colonies of strain was screened which survived at high concentration of 2,4-DCP (1000 ppm) and with peroxidase activity for the $7^{th}$ round screening step on agar plate. These strains were utilized 2,4-DCP as a sole carbon source and produced peroxidase. After the screening test, four of the bacteria have significant better effect of COD removal on dye waste-water. COD removal of these was from 44% to 61%, respectively.

키워드

참고문헌

  1. J. Balfanz and H. J. Rehm (1991), Biodegradation of 4-chlorophenol by adsorptive immobilized Alcaligenes sp.A-72 in soil, Appl. Microbiol. Biotechnol. 35, 662-668
  2. M. M. Häggblom and R. J. Valo (1995), Bioremediation of chlorophenol wastes, in:L. Y. Young, and C. E. Cerniglia (Eds.), Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss Inc., New York, pp389-434
  3. M. Salkinoja-Salonen, P. Middeldorp, M. Briglia, R. Valo, M. Häggblom, and A. McBain (1989), Cleanup of old industrial sites, in : D. Kamely, A. Chakrabarty, and G. S. Omenn (Eds.), Biotechnology and bio-degradation. Portfolio Publishing Company, The Woodlands, Texas, pp347-365
  4. H. A. Sharma, J. T. Barber, H. E. Ensley, and M. A. Polito (1997), A comparison of the toxicity and metabolism of phenol and chlorinated phenols by Lemnagibba, with special reference to 2,4,5-trichlorophenol, Environ. Toxicol. Chem. 16, 346-350 https://doi.org/10.1897/1551-5028(1997)016<0346:ACOTTA>2.3.CO;2
  5. C. A. Bellin, G. A. O'Connor, and Y. Jin (1990), Sorption and degradation of penta-chlorophenol in sludge-amended soils, J. Environ. Qual. 19, 603-608 https://doi.org/10.2134/jeq1990.00472425001900030041x
  6. R. H. Don and J. M. Pemberton, (1981) Properties of six pesticide degradation plasmids isolated from Alcaligene sparadoxus and Alcaligenes eutrophus, J. Bacteriol. 145, 681-686
  7. B. Gonzalez, P. Clement, R. Cespedes, J. Valenzuela, V. Matus, A. Maturana, and N. Ehrenfeld (1996), Degradation of environmental pollutants by Alcaligenes eutrophus JMP 134 (pJP4). Environ. Toxicol. Water Qual. 11, 205-211 https://doi.org/10.1002/(SICI)1098-2256(1996)11:3<205::AID-TOX5>3.0.CO;2-D
  8. L. Xun (1996), Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100, J. Bacteriol. 178, 2645-2649 https://doi.org/10.1128/jb.178.9.2645-2649.1996
  9. J. Everse, K. E. Everse, and M. B. Grisham (1990), Peroxidases in chemistry and biology, vol.1.CRC Press, Boca Raton, Fla
  10. R. J. Lewis Sr. (1993), Hawley's Condensed Chemical Dictionary, 12th ed., Van Nostr and Reinhold Co., New York, U.S.A., p888
  11. J. M. Orten and O. W. Neuhaus (1970), Biochemistry, 8th ed., The C.V. Mosby Co., U.S.A., pp250-251
  12. J. E. Frew, P. Jones, and G. Scholes (1983), Spectrophotometric determination of hydrogen peroxide and organic hydroperoxides at low concentrations in aqeous solution, Anal. Chim. Acta, 155, 139-150 https://doi.org/10.1016/S0003-2670(00)85587-7
  13. D. Arseguel and M. Baboulene (1994), Removal of phenol from coupling of talc and peroxidase. application for depollution of waste water containing phenolic compounds, J. Chem. Tech. Biotech., 61, 331-335 https://doi.org/10.1002/jctb.280610408
  14. P. R. Adler, R. Arora, A. E. Ghaouth, D. M. Glenn, and J. M. Solar, (1994), Bioremediation of phenolic compounds from water with plant root surface peroxidases, J. Environ. Qual. 23, 1113-1117 https://doi.org/10.2134/jeq1994.00472425002300050038x
  15. S. Harayama (1998), Artificial evolution by DNA shuffling, Trends Biotech. 16, 76-82 https://doi.org/10.1016/S0167-7799(97)01158-X
  16. J. H. Zhang, G. Dawes, and W. P. Stemmer (1997), Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening, Proc. Natl. Acad. Sci. USA, 94, 4504-4509
  17. K. Ryu and E. K. Lee (2002), Rapid colorimetric assay and yeast surface display for screening of highly functional fungal lignin peroxidase, Journal of Chemical Engineering of Japan, 35(6), 527-532 https://doi.org/10.1252/jcej.35.527
  18. APHA (1998) Standard Methods for Examination of Water and W aste W ater, 20th ed. American Public Health Association, Washington D.C., USA
  19. T. K. Kirk (1984), Degradation of Lignin, in: D. T. Gibson (Eds), Biochemistry of Microbial Degradation, Marcel Dekker. New York, pp399-437