DOI QR코드

DOI QR Code

Self Power Generation from Vibration using Piezoelectric Bimorph Actuator

압전 바이몰프 액츄에이터의 진동에 따른 자가 발전특성

  • 김창일 (고려대학교 신소재공학과) ;
  • 정영훈 (요업(세라믹)기술원 전자부품팀) ;
  • 이영진 (요업(세라믹)기술원 전자부품팀) ;
  • 백종후 (요업(세라믹)기술원 전자부품팀) ;
  • 남산 (고려대학교 신소재공학과)
  • Published : 2008.12.01

Abstract

This paper presents the self power generation from vibration using the piezoelectric bimorph actuator. The piezoelectric bimorph actuator was well developed with PZT-PNN-Fe piezoelectric ceramics. As the applied voltage was increased, a linear change of displacement was obtained with a relatively high ratio of 12.53 um/V for the bimorph actuator. Moreover, when the motor's rotational speed was 2000 rpm, the bimorph actuator, which has a resonance frequency of 68 Hz, exhibited the most efficient generation voltage of 10.4 V. This bimorph actuator could make the LED, emitting 60 mW, working successfully. Therefore, it is anticipated that the bimorph actuator will be useful as a power source for the next-generation electronic devices.

Keywords

References

  1. N. S. Shenck and J. A. Paradiso, "Energy scavenging with shoe-mounted piezoelectrics", IEEE Micro, Vol. 21, No. 3, p. 30, 2001 https://doi.org/10.1109/40.928763
  2. E. S. Leland and P. K. Wright, "Resonance tunning of piezoelectric vibration energy scavenging generators using compressive axial preload", Smart Mater. Struct., Vol. 15, p. 1413, 2004 https://doi.org/10.1088/0964-1726/15/5/030
  3. E. Minazara, D. Vasic, F. Costa, and G. Poulin, "Piezoelctric diaphragm for vibration energy harvesting", Ultrason., Vol. 44, p. 699, 2006 https://doi.org/10.1016/j.ultras.2006.05.141
  4. M. Ericka, D. Vasic, F. Costa, and G. Poulain, "Predictive energy harvesting from mechanical vibration using a circular piezoelectric membrane", Proc. IEEE Ultrason. Symp., p. 946, 2005
  5. H. A. Sodano, J. Lloyd, and D. J. Inman, "An experimental comparison between several composite actuators for power generation", Smart Mater. Struct., Vol. 15, p. 1211, 2006 https://doi.org/10.1088/0964-1726/15/5/007
  6. T. Starner, "Human-powered wearable computing", IBM Systmes, J., Vol. 35, No. 3&4, p. 618, 1996 https://doi.org/10.1147/sj.353.0618
  7. J. A. Paradiso and T. Starner, "Energy scavenging for mobile and wireless electronics", IEEE Pervasive Computing, Vol. 4, No. 1, p. 18, 2005
  8. H. J. Sun and J. H. Lee, "Piezoelectric energy harvesting using vibration (in Korean)", Bulletin of the Korean Institute of Electrical and Electronic Material Engineers, Vol. 20, No. 4, p. 3, 2007
  9. E. K. Lim, C. I. Kim, Y. J. Lee, J. I. Im, and J. H. Paik, "Effects of $Fe_{2}O_{3}$ addition on piezoelectric properties of $Pb(Ni_{1/3} Nb_{2/3})O_{3} - PbZrO_{3} - PbTiO_{3}$ ceramics for actuator applications", J. of KIEEME(in Korean), Vol. 19, No. 10, p. 935, 2006 https://doi.org/10.4313/JKEM.2006.19.10.935
  10. S. Roundy, P. K. Wright, and J. Rabaey, "A study of low vibrations as a power source for wireless sensor nodes", Comput. Commun., Vol. 26, p. 1131, 2003 https://doi.org/10.1016/S0140-3664(02)00248-7
  11. S. Roundy and P. K. Wright, "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., Vol. 13, p. 1131, 2004 https://doi.org/10.1088/0964-1726/13/5/018
  12. C. S. Lee, J. Joo, S. Han, J. H. Lee, and S. K. Koh, "Poly (vinylidene fluoride) transducers with highly conducting poly (3,4- ethylenedioxythiophene) electrodes", Synthetic Metals, Vol. 152, p. 49, 2005 https://doi.org/10.1016/j.synthmet.2005.07.116