Abstract
To analyze incident waves traveling from the deep ocean is very important in that it is based on resolving problems occurred in coastal areas. In general, numerical models and analytical solutions are used to analyze wave transformation. Although a numerical model can be applied to various bottoms and wave conditions, it may have some cumbersome numerical errors. On the other hand, an analytical solution has an advantage of obtaining the solution quickly and accurately without numerical errors. The analytical solution can, however, be utilized only for specific conditions. In this study, the analytical solution of the mild-slope equation has been developed. It can be applied to various conditions combing a numerical technique and an analytical approach while minimizing the numerical errors. As a result of comparing the obtained solutions in this study with those of the previously developed numerical model, A good agreement was observed.
외해에서 내습하는 파랑 자료를 분석하는 일은 연안에서 발생하는 문제를 해결함에 있어 기본이 되기 때문에 매우 중요하다. 파랑을 해석하는 방법에는 크게 수치 모델을 이용하는 방법과 해석 해를 이용하는 방법이 있다. 수치 모델의 경우, 다양한 지형과 파랑 조건에 대해 적용할 수 있다는 장점이 있지만 수치 오차를 고려해야 하는 번거로움이 있다. 반면, 해석 해의 경우 수치 오차 없이 빠르고 정확하게 해를 구할 수 있다는 장점이 있지만 특정한 지형 및 파랑 조건에서만 성립한다는 단점이 있다. 본 연구에서는 수치적인 기법과 해석적인 접근을 혼합하여 수치 오차를 최소화시키면서 다양한 조건에 적용이 가능한 완경사 방정식의 해를 유도하였다. 유도된 해를 기존의 수치 해와 비교한 결과 매우 잘 일치한다는 알 수 있었다.