Source와 기판 거리에 따른 GaN nanowires의 합성 mode 변화 제어

Distance between source and substrate and growth mode control in GaN nanowires synthesis

  • 신동익 (성균관대학교 신소재공학과) ;
  • 이호준 (성균관대학교 신소재공학과) ;
  • 강삼묵 (성균관대학교 신소재공학과) ;
  • 윤대호 (성균관대학교 신소재공학과)
  • Shin, T.I. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Lee, H.J. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Kang, S.M. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Yoon, D.H. (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 발행 : 2008.02.29

초록

GaN nanowires는 수평 VPE법으로 합성 되었다. 본 실험에서는 source와 기판과의 거리가 합성된 GaN nanowires의 형상에 미치는 영향에 대하여 실험하였다. GaN nanowires는 $950^{\circ}C$ 온도에서 Ar 과 $NH_3$ 가스가 각각 1000, 50 sccm 의 유량에서 합성되었다. 합성된 GaN nanowires의 단면형태는 삼각형의 모양을 가졌으며, GaN nanowires의 길이는 200에서 500 nm 정도 였다. 합성된 GaN nanowires의 모양은 FESEM 으로 확인하였고, XRD 분석을 통하여 그 구조가 wurzite 구조인 것을 확인하였다. 또한, HRTEM 사진과 SAED 패턴을 통하여 합성된 GaN nanowires의 표면과 구조를 분석하였다. 성장된 GaN nanowires의 광학적 특성은 PL분석을 통하여 이루어졌다.

We synthesized GaN nanowires with high quality using the vapor phase epitaxy technique. The GaN nanowires were obtained at a temperature of $950^{\circ}C$. The Ar and $NH_3$ flow rates were 1000 sccm and 50 sccm, respectively. The shape of the GaN nanowires was confirmed through FESEM analysis. We were able to conclude that the GaN nanowires synthesized via vapor-solid (VLS) mechanism when the source was closed to the substrate. On the other side, the VS mechanism changed to vapor-liquid-solid (VLS) as the source and the substrate became more distant. Therefore, we can suggest that the large amount of Ga source from initial growth interrupt the role of catalyst on the substrate.

키워드

참고문헌

  1. S. Nakamura, T. Mukai and M. Senoh, "Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes", Appl. Phys. Lett. 64 (1994) 1687 https://doi.org/10.1063/1.111832
  2. S.J. Pearton, F. Ren, A.P. Zhang and K.P. Lee, "Fabrication and performance of GaN electronic devices", Mater. Sci. Eng. Rep. R30 (2000) 55
  3. T. Miyajima, T. Tojyo, T. Asano, K. Yanashma, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi and M. Ikeda, "GaN-based blue laser diodes", J. Phys. Cond. Matter 13 (2001) 7099 https://doi.org/10.1088/0953-8984/13/32/315
  4. A.M. Morales and C.M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires", Science 279 (1998) 208 https://doi.org/10.1126/science.279.5348.208
  5. L.-W. Yin, Y. Bando, Y.-C. Zhu, D. Goldberg, L.-W. Yin and M.-S. Li, "Indium-assisted synthesis on GaN nanotubes", Appl. Phys. Lett. 84 (2004) 3912 https://doi.org/10.1063/1.1741026
  6. X. Xiang, C. Cao, Y. Xu and H. Zhu, "Catalytic synthesis of single-crystalline gallium nitride nanobelts", Solid State Comm. 126 (2003) 6
  7. S.Y. Bae, H.W. Seo, J. Park, H. Yang and S.A. Song, "Synthesis and structure of gallium nitride nanobelts", Chem. Phys. Lett. 365 (2002) 525 https://doi.org/10.1016/S0009-2614(02)01507-5
  8. Z.J. Li, X.L. Chen, H.J. Li, Q.Y. Tu, Z. Yang, Y.P. Xu and B.Q. Hu, "Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires", Appl. Phys. A 72 (2001) 629 https://doi.org/10.1007/s003390100796
  9. J.C. Wang, S.Q. Feng and D.P. Yu, "High-quality GaN nanowires synthesized using a CVD approach", Appl. Phys. A 75 (2002) 691 https://doi.org/10.1007/s00339-002-1455-z
  10. L.X. Zhao, G.W. Meng, X.S. Peng, X.Y. Zhang and L.D. Zhang, "Large-scale synthesis of GaN nanorods and their photoluminescence", Appl. Phys. A 74 (2002) 587 https://doi.org/10.1007/s003390100918
  11. J. Zhang, L. Zhang, F.H. Jiang and Z.H. Dai, "Intensive blue-light emission from semiconductor GaN nanowires sheathed with BN layers", Chem. Phys. Lett. 383 (2004) 423 https://doi.org/10.1016/j.cplett.2003.11.057
  12. T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger and P. Yang, "Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections", Nano Lett. 3 (2003) 1063 https://doi.org/10.1021/nl034422t
  13. Z. Dong, C. Xue, H. Zhuang, S. Wang, H. Gao, D. Tian, Y. Wu, J. He and Y. Liu, "Synthesis of three kinds of GaN nanowires through Ga2O3 films' reaction with ammonia", Physica, E, Low-Dimens. Syst. Nanostruct. 27 (2005) 32 https://doi.org/10.1016/j.physe.2004.10.003
  14. X. Duan and C.M. Lieber, "Laser-assisted catalytic growth of single crystal GaN nanowires", J. Am. Chem. Soc. 122 (2000) 188 https://doi.org/10.1021/ja993713u
  15. T. Kuykendall, P.J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger and P. Yang, "Crystallographic alignment of high-density gallium nitide nanowire arrays", Nature materials Lett. 3 (2004) 524 https://doi.org/10.1038/nmat1177
  16. A. Gassmann, T. Suski, N. Newman, C. Kisielowski, E. Jones, E.R. Weber, Z. Liliental-Weber, M.D. Rubin, H.I. Helava, I. Grzegory, M. Bockowski, J. Jun and S. Porowski, "Homoepitaxial growth of GaN using molecular beam epitaxy", J. Appl. Phys. 80 (1996) 2195 https://doi.org/10.1063/1.363112