DOI QR코드

DOI QR Code

Comparison of Soil Loss Estimation using SWAT and SATEEC

SWAT과 SATEEC 모형을 이용한 토양유실량 비교

  • 박윤식 (강원대학교 농업생명과학대학) ;
  • 김종건 (강원대학교 농업생명과학대학) ;
  • 허성구 (강원대학교 농업생명과학대학) ;
  • 김남원 (한국건설기술연구원) ;
  • 안재훈 (고령지 농업연구소) ;
  • 박준호 (강원대학교 농업생명과학대학) ;
  • 김기성 (강원대학교 농업생명과학대학) ;
  • 임경재 (강원대학교 농업생명과학대학)
  • Published : 2008.01.31

Abstract

Soil erosion is a natural process and has been occurring in most areas in the watershed. However, accelerated soil erosion rates have been causing numerous environmental impacts in recent years. To reduce soil erosion and sediment inflow into the water bodies, site-specific soil erosion best management practices(BMPs) need to be established and implemented. The most commonly used soil erosion model is the Universal Soil Loss Equation(USLE), which have been used in many countries over 30 years. The Sediment Assessment Tool for Effective Erosion Control(SATEEC) ArcView GIS system has been developed and enhanced to estimate the soil erosion and sediment yield trom the watershed using the USLE input data. In the last decade, the Soil and Water Assessment Tool(SWAT) model also has been widely used to estimate soil erosion and sediment yield at a watershed scale. The SATEEC system estimates the LS factor using the equation suggested by Moore and Burch, while the SWAT model estimates the LS factor based on the relationship between sub watershed average slope and slope length. Thus the SATEEC and SWAT estimated soil erosion values were compared in this study. The differences in LS factor estimation methods in the SATEEC and SWAT caused significant difference in estimated soil erosion. In this study, the difference was -51.9%(default threshold)${\sim}-54.5%$(min. threshold) between SATEEC and non-patched SWAT, and -7.8%(default threshold)${\sim}+3.8%$(min. threshold) between SATEEC and patched SWAT estimated soil erosion.

Keywords

References

  1. 김기성, 허성구, 정영상, 김지만, 임경재, 2005, 홍천군 산지농업지대의 토양침식 취약성 분석, 한국농촌계획학회, 11(2), pp.51-57
  2. 박윤식, 김종건, 박준호, 전지홍, 최동혁, 김태동, 최중대, 안재훈, 김기성, 임경재, 2007, 임하댐 유역의 유사 거동 모의를 위한 SWAT 모델의 적용성 평가, 한국물환경학회지, 23(4), pp. 467-473
  3. 유동선, 안재훈, 윤정숙, 허성구, 박윤식, 김종건, 임경재, 김기성, 2007, SATEEC 시스템을 이용한 객토 토양의 토성고려에 따른 도암댐 유역의 토양 유실 및 유사량 분석, 한국물환경학회지, 23(4), pp.518-526
  4. 임경재, 허성구, 박윤식, 김종건, 박준호, 최대현, 강현우, 2007a, SATEEC 시스템의 개발, 강원대학교 농업공학부, GIS 환경 시스템 연구실, No. 0707, http://www.EnvSys.co.kr/~sateec
  5. 임경재, 허성구, 박윤식, 김종건, 박준호, 최대현, 강현우, 2007b, SWAT ArcView GIS Extension Patch 개발, 강원대학교 농업공학부, GIS 환경 시스템 연구실, No.0708, http://www.EnvSys.co.kr/~swat
  6. 정영상 ,권영기, 임형식, 하상건, 양재의, 1999, 강원도 경사지 토양 유실예측용 신 USLE의 적용을 위한 강수 인자와 토양 침식성인자의 검토, 한국토양비료학회지, 32(1), pp.31-38
  7. 정영상, 신재성, 신용화. 1976, 경사지 토양의 침식인자에 관하여, 한국토양비료학회지, 9(2), pp. 107-113
  8. 정필균, 고문환, 엄기태, 1985, 토양유실량 예측을 위한 작부인자 검토, 한국토양비료학회지, 18(1), pp.7-13
  9. 허성구, 김기성, 사공명, 안재훈, 임경재, 2005, 농촌계획학회지, 11(4), pp.67-74
  10. 허성구, 유동선, 김재영, 김기성, 안재훈, 박윤식, 김종건, 박준호, 임경재, 최중대, 소유역 구분이 SWAT 예측치에 미치는 영향 평가, 2006, 한국관개배수학회지, 13(2), pp.55-62
  11. Arnold, J. G. and P. M. Allen, 1999, Automated methods for estimating baseflow and ground water recharge from streamflow records, Journal of the American Water Resources Association, 35(2), pp.411-424 https://doi.org/10.1111/j.1752-1688.1999.tb03599.x
  12. Foster, G. R., K. G. Renard, D. C. Yoder, D. K. McCool and G. A. Weesies, 1996, User's Guide, Soil & Water Cons. Soc.
  13. Haan, C. T., B. J. Barfield and J. C. Hayes, 1994, Design Hydrology and Sedimentology for Small Catchments. San Diego: Academic Press
  14. Lim, K. J., M. Sagong, B. A. Engel, T. Zhenxu, J. D. Choi and K. S. Kim, 2005, GIS-based sediment assessment tool, Catena, 64, pp.61-80 https://doi.org/10.1016/j.catena.2005.06.013
  15. Moore, I. and G. Burch, 1986a, Physical Basis of the Length-Slope Factor in the Universal Soil Loss Equation, Soil Science Society of America Journal, 50, pp.1294-1298 https://doi.org/10.2136/sssaj1986.03615995005000050042x
  16. Moore, I. and G. Burch, 1986b, Modeling Erosion and Deposition, Topographic Effects. Trans. of the ASAE, 29(6), pp.1624-1640 https://doi.org/10.13031/2013.30363
  17. Renard K. G., G. R. Foster, G. A. Weesies, D. K. McCool and D. C. Yoder, 1997, Predicting Soil Erosion by Water, A Guide to Conservation Planning with the Revised Soil Loss Equation(RUSLE), U.S. Dept. of Agriculture, Agric, Handbook No. 703
  18. Williams, J. R., 1975, Sediment Yield Prediction with Universal Equation using Runoff Energy Factor, Present and Prospective Technology for Predicting Sediment Yield and Sources, U.S Department of Agriculture, Washington, D.C., pp.244-252

Cited by

  1. Simulation of the Best Management Practice Impacts on Nonpoint Source Pollutant Reduction in Agricultural Area using STEPL WEB Model vol.56, pp.5, 2014, https://doi.org/10.5389/KSAE.2014.56.5.021
  2. Estimation of Sediment Delivery Ratio in Upper Geum River Basin Using Watershed Model vol.22, pp.6, 2013, https://doi.org/10.14249/eia.2013.22.6.695
  3. Comparison of Natural Flow Estimates for the Han River Basin Using TANK and SWAT Models vol.45, pp.3, 2012, https://doi.org/10.3741/JKWRA.2012.45.3.301
  4. Estimation of Soil Erosion and Sediment Yield in Mountainous Stream vol.22, pp.5, 2013, https://doi.org/10.5322/JESI.2013.22.5.599