Query Optimization with Metadata Routing Tables on Nano-Q+ Sensor Network with Multiple Heterogeneous Sensors

다중 이기종 센서를 보유한 Nano-Q+ 기반 센서네트워크에서 메타데이타 라우팅 테이블을 이용한 질의 최적화

  • 남영광 (연세대학교 컴퓨터정보통신공학부) ;
  • 최귀자 (연세대학교 컴퓨터정보통신공학부) ;
  • 이병대 (삼성전자 차세대단말기연구단) ;
  • 곽광웅 (연세대학교 컴퓨터정보통신공학부) ;
  • 이광용 (한국전자통신연구원 임베디드소프트웨어 연구단) ;
  • 마평수 (한국전자통신연구원 임베디드소프트웨어 연구단)
  • Published : 2008.02.15

Abstract

In general, data communication among sensor nodes requires more energy than internal processing or sensing activities. In this paper, we propose a noble technique to reduce the number of packet transmissions necessary for sending/receiving queries/results among neighboring nodes with the help of context-aware routing tables. The important information maintained in the context-aware routing table is which physical properties can be measured by descendent nodes reachable from the current node. Based on the information, the node is able to eliminate unnecessary packet transmission by filtering out the child nodes for query dissemination or result relaying. The simulation results show that up to 80% of performance gains can be achieved with our technique.

일반적으로 센서노드간의 데이타통신은 내부처리나 센싱 작업보다 더 많은 에너지 소모를 요구한다. 본 논문에서는, 내용인지(context-aware) 라우팅 테이블(routing table)을 이용하여 인접한 노드간의 질의 송수신을 위해 필요한 패킷 송신 수를 줄여 질의 최적화를 수행하는 새로운 아이디어를 제안한다. 내용인지 라우팅 테이블에는 현재 노드로부터 도달 가능한 하위노드에서 측정할 수 있는 센서의 종류에 관한 정보가 저장되어 있다. 내용인지 라우팅 정보를 이용하여 각 노드는 자식노드에게 불필요한 질의 송신이나 결과 전달을 차단함으로써 불필요한 패킷 송신의 수를 줄일 수 있다. 본 논문에서 제안한 방법을 바탕으로 한 시뮬레이션에서 최대 약 80%의 성능 효과를 보였다.

Keywords

References

  1. J. Gehrke, S. Madden, Query Processing in Sensor Networks, Pervasive computing, 2004, Jan-Mar
  2. Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. Tinydb: An Acquisitional Query Processing System for Sensor Networks. ACM Trans. Database Syst., 30(1):122-173, 2005 https://doi.org/10.1145/1061318.1061322
  3. J. Zhu, Dynamic Semantic Routing in Sensor Network, Dept. of CS, RIT, NY, USA
  4. J. Shneidman, P. Pietzuch, M. Welsh, et. al, A Cost-Space Approach to Distributed Query Optimization in Stream Based Overlays
  5. E.B. Ermis and Venkatesh Saligrama. A Statistical Sampling Methods for Decentralized Estimation and Detection of Localized Phenomena. In Fourth Intl. Symp. on Information Processing in Sensor Networks (IPSN), pages 143-150, April 2005
  6. D. Coffin, D. V. Hook, S. McGarry, and S. Kolek. Declarative ad-hoc Sensor Networking. SPIE Integrated Command Environments, 2000
  7. Ramesh Govindan. Data-centric Routing and Storage in Sensor Networks. pages 185-205, 2004
  8. Sylvia Ratnasamy, Brad Karp, Li Yin, Fang Yu, Deborah Estrin, Ramesh Govindan, and Scott Shenker. Ght: A Geographic Hash Table for Data- centric Storage. In WSNA '02: Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications, pages 78-87, New York, NY, USA, 2002. ACM Press
  9. Matt Welsh and Geoff Mainland. Programming Sensor Networks Using Abstract Regions. In NSDI, pages 29-42, 2004
  10. Brad Karp and H. T. Kung. Gpsr: Greedy Perimeter Stateless Routing for Wireless Networks. In MobiCom '00: Proceedings of the 6th annual international conference on Mobile computing and networking, pages 243-254, New York, NY, USA, 2000. ACM Press
  11. Yong Yao and Johannes Gehrke. The COUGAR Approach to In-network Query Processing in Sensor Networks. SIGMOD Rec., 31(3):9-18, 2002 https://doi.org/10.1145/601858.601861
  12. A. Agarwal and T.D.C. Little, Attribute Based Routing in Sensor Networks, Boston University, Boston, Massachusetts, MCL Technical Report No. 06-01-2006
  13. N. Trigoni, et al., Multi-query Optimization for Sensor Networks
  14. B. Krishnamachari, D. Estrin, and S. Wicker. Modelling Data-centric Routing in Wireless Sensor Networks. In IEEE INFOCOM, 2002
  15. http://www.isis.vanderbilt.edu/Projects/nest/jprowler/ index.html