Analysis of Housekeeping Gene Expression in Mice Administered to GM and non-GM Cabbage

유전자변형 배추를 섭취한 마우스 장기에서의 Housekeeping Gene의 발현 분석

  • Lee, Dong-Youb (Department of Food Science & Technology, Kyungpook National University) ;
  • Heo, Jin-Chul (Department of Food Science & Technology, Kyungpook National University) ;
  • Kim, Kyung-Hae (Department of Food Science & Technology, Kyungpook National University) ;
  • Han, Song-Yi (Department of Food Science & Technology, Kyungpook National University) ;
  • Cho, Hyun-Seok (National Institute of Agricultural Biotechnology) ;
  • Lee, Sang-Han (Department of Food Science & Technology, Kyungpook National University)
  • 이동엽 (경북대학교 식품공학과) ;
  • 허진철 (경북대학교 식품공학과) ;
  • 김경해 (경북대학교 식품공학과) ;
  • 한송이 (경북대학교 식품공학과) ;
  • 조현석 (농업생명공학연구원 생물안전성과) ;
  • 이상한 (경북대학교 식품공학과)
  • Published : 2008.02.28

Abstract

We used RT-PCR to measure housekeeping gene expression in mice fed GM and non-GM cabbage, in an effort to evaluate the risk of GM food to humans. After normalization of housekeeping gene levels, highly uniform expression may be seen in many organisms during various stages of development and under different environmental conditions. We assessed the expression of four genes in Chinese cabbage; these were Profilin, Tubulin-alpha (Tub-1), Heat-shock protein (Bchsp 17.6), and Ubiquitin conjugating enzyme (UBE). We measured the expression of four well-known housekeeping genes in mice: ${\beta}$-actin, (${\beta}$-act), ${\beta}$-2-microglobulin(B2m), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ${\beta}$-glucuronidase (Gus). Gene expression was measured in liver, stomach, small intestine, large intestine, kidney, and spleen of mice fed GM or non-GM cabbage. No significant expression differences were found.

유전자 변형 작물은 생산성 측면에서 많은 장점이 있지만 이를 섭취할 경우 잠재적인 위험 요소들에 의해 많은 문제가 대두대고 있다. 본 연구는 저항성유전자를 이입한 배추에서 Profillin, Tubulin-${\alpha}$ (Tub-${\alpha}1$), Heat-shock protein (Bchsp 17.6) and Ubiquitin conjugating enzyme (UBE)의 발현과 이를 30일간 섭취한 마우스에서 ${\beta}$-actin(${\beta}$-act), ${\beta}$-2-microglobulin (B2m), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ${\beta}$-glucuronidase (Gus)의 발현 정도를 RT-PCR을 통해 알아보았다. 실험 결과 저항성유전자를 이입한 배추와 그렇지 않은 배추의 유전자 발현 패턴은 큰 차이를 보이지 앓았으며, 이를 섭취한 마우스 장기에서도 발현에 따른 큰 차이는 나타나지 않았다.

Keywords

References

  1. Blanco-Aparicio, C., Renner, O., Leal, J.F. and Carnero, A. (2007) PTEN, more than the AKT pathway. Carcinogenesis, 28, 1379-1386 https://doi.org/10.1093/carcin/bgm052
  2. Tüting, T., DeLeo, A.B., Lotze, M.T. and Storkus, W.J. (1997) Genetically modified bone marrow-derived dendritic cells expressing tumor-associated viral or "self" antigens induce antitumor immunity in vivo. Eur. J. Immunol., 27, 2702-2707 https://doi.org/10.1002/eji.1830271033
  3. Jank, B., Rath, J. and Gaugitsch, H. (2006) Co-existence of agricultural production systems. Trends Biotechnol., 24, 198-200 https://doi.org/10.1016/j.tibtech.2006.03.001
  4. Reis, L.F., Van Sluys, M.A., Garratt, R.C., Pereira, H.M. and Teixeira, M.M. (2006) GMOs: building the future on the basis of past experience. Ann. Acad. Bras. Cienc., 78, 667-686 https://doi.org/10.1590/S0001-37652006000400005
  5. Monastra, G. and Rossi, L. (2003) Transgenic foods as a tool for malnutrition elimination and their impact on agricultural systems. Riv. Biol., 96, 363-384
  6. Deaville, E.R. and Maddison, B.C. (2005) Detection of transgenic and endogenous plant DNA fragments in the blood, tissues, and digesta of broilers. J. Agric. Food Chem., 53, 10268-10275 https://doi.org/10.1021/jf051652f
  7. Gujar, G.T., Kalia, V., Kumari, A., Singh, B.P., Mittal, A., Nair, R. and Mohan, M. (2007) Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India. J. Invertebr. Pathol., 95, 214-249 https://doi.org/10.1016/j.jip.2007.03.011
  8. Jain, M., Nijhawan, A., Tyagi, A.K. and Khurana, J.P. (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun.,345, 646-651 https://doi.org/10.1016/j.bbrc.2006.04.140
  9. Filby, A.L. and Tyler, C.R. (2007) Appropriate 'housekeeping' genes for use in expression profiling the effects of environmental estrogens in fish. BMC Mol. Biol., 8, 10-15 https://doi.org/10.1186/1471-2199-8-10
  10. Rodriguez-Mulero, S. and Montanya, E. (2005) Selection of a suitable internal control gene for expression studies in pancreatic islet grafts. Transplantation, 80, 650-652 https://doi.org/10.1097/01.tp.0000173790.12227.7b
  11. Mazza, R., Soave, M., Morlacchini, M., Piva, G. and Marocco, A. (2005) Assessing the transfer of genetically modified DNA from feed to animal tissues. Transgenic Res., 14, 775-784 https://doi.org/10.1007/s11248-005-0009-5
  12. Guerrero, G.G., Russell, W.M. and Moreno-Fierros, L. (2007) Analysis of the cellular immune response induced by Bacillus thuringiensis Cry1A toxins in mice: effect of the hydrophobic motif from diphtheria toxin. Mol. Immunol., 44, 1209-1217