DOI QR코드

DOI QR Code

Characterization of Lactate Dehydrogenase in Acanthogobius hasta

풀망둑(Acanthogobius hasta) 젖산탈수소효소의 특성

  • Yum, Jung-Joo (Department of Life Science, Cheongju University)
  • 염정주 (청주대학교 생명유전통계학부 생명과학)
  • Published : 2008.02.28

Abstract

The lactate dehydrogenase (EC 1.1.1.27, LDH) isozymes in tissues from Acanthogobius hasta were characterized by biochemical, immunochemical and kinetic methods. The activities of LDH in skeletal muscle and eye tissues were 65.30 and 53.25 units, but LDH activities in heart and liver tissues were very low. LDH/CS (EC 4.1.3.7, citrate synthase) in skeletal muscle was the highest as 22.29. Specific activities of LDH in brain, eye and skeletal muscle were 56.45, 38.04 and 11.0 units/mg, respectively. The LDH isozymes in tissues were separated by polyacrylamide gel electrophoresis after immunoprecipitation with antiserum against $A_4,\;B_4$ eye-specific $C_4$ and liver-specific $C_4$. LDH $AC_4$ isozymes were detected predominantly in skeletal muscle, brain and eye tissues, and $B_4$ isozyme was detected in heart. Anodal eye-specific $C_4$ and cathodal liver-specific $C_4$ were coexpressed in A. hasta. The eye-specific $C_4$ isozyme showed higher activity in eye tissue, but liver-specific $C_4$ isozyme showed lower activity in liver. As a result, one part of molecular structures in $A_4\;and\;C_4,\;A_4\;and\;B_4$, and eye-specific $C_4$ and liver-specific $C_4$ were similar, but in $B_4\;and\;C_4$ were different with each other. Therefore the subunit A may be conservative in evolution, and the evolution of subunit B seems to be faster than that of subunit A. The LDH $A_4$ isozyme of skeletal muscle was purified in the fraction from elution with NAD+ containing buffer of affinity chromatography and eye-specific $C_4$ isozyme was eluted right after $A_4$, so the structure of eye-specific $C_4$ isozyme is similar to $A_4$. And LDH activity remained 35.22-43.47% as a result of the inhibition by pyruvate, the Michaelis-Menten constant values for pyruvate was 0.080-0.098 mM, and Vmax were 153.85 units, 35.09 units in skeletal muscle and eye, respectively. Also the $B_4$ isozyme was the thermo-stablest and $C_4$ was stabler than $A_4$ isozyme. The optimum pH of LDH was 6.5. The results mentioned above indicate that isozymes in tissues showed the properties between LDH $A_4\;and\;B_4$ isozyme as A. hasta was adapted to hypoxic conditions. Also LDH seems to function more effectively under anaerobic condition because LDH in skeletal muscle and eye tissues have high affinity for pyruvate.

풀망둑(Acanthogobius hasta) 조직의 젖산탈수소효소(EC 1.1.1.27 Lactate dehydrogenase, LDH) 동위 효소의 특성을 생화학적, 면역화학적 및 역학적 방법에 의해 연구하였다. 풀망둑 골격근과 눈 조직의 젖산탈수소효소 활성이 65.30과 53.25 units였고, 심장과 간 조직에서는 낮게 나타났다. 골격근 조직의 LDH/CS는 22.29로 가장 높고, LDH 특이활성도는 뇌 56.45, 눈 38.04 및 골격근 11.04 units/mg였다. 각 조직에 대해 $A_4,\;B_4$, eye-specific $C_4$, 및 liver-specific $C_4$에 대한 항혈청으로 면역 침강 반응시킨 후 Polyacrylamide gel 전기영동 하였다. 골격근, 뇌 및 눈 조직에서 $A_4$ 동위효소가 우세하게 확인되었고, 심장에서는 $A_4$ 동위효소가 확인되었다. 또한 양극의 eye-specific t와 음극의 liver-specific $C_4$가 한 종에서 함께 발현되었으며, 눈 조직의 eye-specific $C_4$는 활성이 크고 간 조직의 liver-Specific $C_4$의 활성은 낮게 나타났다. 결과 $A_4$$C_4,\;A_4$$B_4$ 및 eye-specific $C_4$와 liver-specific $C_4$의 분자구조의 일부가 서로 유사하지만 $B_4$$C_4$의 구조는 서로 다른 것으로 나타났으므로 하부단위체 A는 보존적이고 하부단위체 B는 하부단위체 A보다 빠르게 진화된 것으로 사료된다. 골격근 조직의 LDH $A_4$ 동위효소는 affinity chromatography에서 $NAD^+$를 함유한 buffer를 유입한 후 용출된 분획에서 정제되었고, eye-specific $C_4$ 동위효소는 $A_4$ 분획에 이어 용출되었으므로 eye-specific $C_4$$A_4$의 분자 구조와 유사한 것으로 보인다. 그리고 LDH에 대한 피루브산의 저해 실험 결과 35.22-43.47% 의 활성이 남았고, $Km_{pyr}$은 0.080-0.098 mM이고 골격근과 눈조직의 Vmax은 153.85와 35.09 units였다. 또한 $B_4$ 동위효소가 열에 대해 가장 안정하였고 $C_4$$A_4$보다 안정하였으며, 최적 pH는 6.5로 나타났다. 본 실험 결과 풀망둑은 저 산소 환경조건에 적응되어져 조직들의 동위효소들이 $A_4$$B_4$ 동위효소 사이의 특성을 나타냈고, 골격근과 눈 조직에서 피루브산에 대한 LDH의 친화력이 상당히 크므로 LDH가 혐기적 조건에서 효율적으로 기능을 하는 것으로 사료된다.

Keywords

References

  1. Ahmad, R. and A. Hasnain. 2005. Ontogenic changes and developmental adjustments in lactate dehydrogenase isozymes of an obligate air-breathing fish Channa punctatus during deprivation of air access. Comp. Biochem. Physiol. 140, 271-278 https://doi.org/10.1016/j.cbpc.2004.10.012
  2. Almeida-Val, V. M. V. and A. L. Val. 1993. Evolutionary trends of LDH isozymes in fishes. Comp. Biochem. Physiol. 105B, 21-28
  3. Almeida-Val, V. M. F. and P. W. Hochachka. 1995. Air-breathing fishes: metabolic biochemistry of the first diving vertebrates. pp. 45-55, In Hochachka, P. W. and T. Mommsen (eds.), Biochemistry and molecular biology of fishes, Vol. 5, Elsevier Science, Amsterdam
  4. Auerbarch, G., F. Ostendorp, L. Prade, I. Komdorfer, T. Dams, R. Huber and R. Jaenicke. 1998. Lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: the crystal structure at 2.1 angstrom resolution reveals strategies for intrinsic protein stabilization. Structure 6, 769-781 https://doi.org/10.1016/S0969-2126(98)00078-1
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Cho, S. K. 2000. Mitochondrial lactate dehydrogenase in tissues of vertebrate. pp 88, Ph. D. Thesis Cheongju Univ., Korea
  7. Cho, S. K. and J. J. Yum. 2004. Lactate dehydrogenase isozyme of hypoxia tropical catfish (Pangasius polyuranodon, Hypostomus plecostomus). J. Life Sci. 14, 702-707 https://doi.org/10.5352/JLS.2004.14.4.702
  8. Cho, S. K. and J. J. Yum. 2005. Changes of activities and isozymes of lactate dehydrogenase in Coreoperca herzi and Pseudogobio esocinus acclimated to rapid increase of dissolved oxygen. J. Life Sci. 15, 71-79 https://doi.org/10.5352/JLS.2005.15.1.071
  9. Cho, S. K., S. Y. Park and J. J. Yum. 1993. Purification and immunochemistry of lactate dehydrogenase in Lampetra japonica. Korean J. Zool. 36, 505-513
  10. Cho, S. K., D. W. Park and J. J. Yum. 1999. Purification of lactate dehydrogenase isozymes in Mus musculus. J. Ind. Sci. Cheongju Univ. 17, 75-81
  11. Dalla Via, J., G. V. den Thillart, O. Cattani and A. de Zwaan. 1994. Influence of long-term hypoxia exposure on the energy metabolism of Solea solea: II. Intermediary metabolism in blood, liver and muscle. Mar. Ecol. Prog. Ser. 111, 17-27 https://doi.org/10.3354/meps111017
  12. Davis, B. J. 1964. Disc electrophoresis-II. Method and application to human serum proteins. Ann. N. Y. Acad. Sci. 121, 404-427 https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
  13. Dunn, J. F., P. W. Hochachka, W. Davison and M. Guppy. 1983. Metabolic adjustments to diving and recovery in the african lungfish. Am. J. Physiol. 245, R651-R657
  14. Hardisty, M. W. 1982. Lampreys and hagfishes: analysis of cyclostome relationships. pp. 165-259, In Hardisty, M. W. and I. C. Potter (eds.), The biology of lamprey Vol. 4B, Academic Press, London
  15. Hochachka, P. W. 1979. Cell metabolism air breathing and the origins of endothermy. pp. 253-288, In Wood, S. C. and C. Lenfant (eds.), Evolution of respiratory processes, Marcel Dekker, N.Y.
  16. Hochachka, P. W. 1980. Living without oxygen. pp. 181, Harvard Univ. Press. Cambridge
  17. Hochachka, P. W. and W. C. Hulbert. 1978. Glycogen 'seas' glycogen bodies and glycogen granules in heart and skeletal muscle of two air-breathing burrowing fishes. Can. J. Zool. 56, 774-786 https://doi.org/10.1139/z78-107
  18. Hochachka, P. W., M. Guppy, K. B. Storey and W. C. Hulbert. 1978a. Metabolic biochemistry of water-vs. airbreathing fishes: muscle enzymes and ultrastructure. Can. J. Zool. 56, 820-832 https://doi.org/10.1139/z78-114
  19. Hochachka, P. W., M. Guppy, K. B. Guderley, K. B. Storey and W. C. Hulbert. 1978b. Metabolic biochemistry of water- vs. air-breathing osterglossids: heart enzymes and ultrastructure. Can. J. Zool. 56, 759-768 https://doi.org/10.1139/z78-105
  20. Holt, R. W. and W. S. Leibel. 1987. Coexpression of distinct eye- ad liver-specific LDH isozymes in cichlid fish. J. Exp. Zool. 224, 337-343
  21. Kim, M. O. and J. J. Yum. 1989. Purification, kinetics and immunochemistry of two homotetrameric lactate dehydrogenase isozymes in Pseudgobio esocinus (Cypriniformes). Korean J. Zool. 32, 420-428
  22. Kim, J. B., S. K. Kim and J. J. Yum. 2003. Changes of activities and isozymes of lactate dehydrogenase in Pseudogobio esocinus acclimated to acute change of temperature. J. Ind. Sci. Cheongju Univ. 21, 37-44
  23. Lammli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  24. Li, S. S-L., W. M. Fitch, Y-C. E. Pan and F. S. Sharief. 1983. Evolutionary relationships of vertebrate lactate dehydrogenase isozymes A4 (muscle), B4 (heart), and C4 (testis). J. Biol. Chem. 258, 7029-7032
  25. Martinez, G., P. Behres and Z. Coppes. 1994. pH and temperature influences on the Km values of LDH A4 from white muscles of two eurythermal sciaennd fishes. Comp. Biochem. Physiol. 107B, 645-648
  26. Maxime, V., K. Pichavant, G. Boeuf and G. Nonnotte. 2000. Effects of hypoxia on respiratory physiology of turbot, Scophthalmus maximus. Fish Physiol. Biochem. 22, 51-59 https://doi.org/10.1023/A:1007829214826
  27. Migdalski, E. C. and G. S. Fichter. 1983. Family Gobiidae. pp. 272-274, In The fresh and salt water fishes of the world, Greenwich House, N.Y
  28. Moon, J. H. 2006. Respiratory metabolism and antioxidant activities of tissues in Boleothalmus pectinirostris. pp. 86, MS. Thesis Cheongju Univ., Korea
  29. Moyes, C. D., O. A. Mathieu-Costello, R. W. Brill and P. W. Hochachka. 1992. Mitochondrial metabolism of cardiac and skeletal muscles form a fast (Katsuwonus pelamis) and a slow (Cyprinus carpio) fish. Can. J. Zool. 70, 1246-1253 https://doi.org/10.1139/z92-172
  30. O'Brien, J., K. M. Kla, I. B. Hopkins, E. A. Malecki and M. C. McKenna. 2007. Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate utilization by neurons. Neurochem Res. 32, 597-607 https://doi.org/10.1007/s11064-006-9132-9
  31. O'Carra, P. and S. Barry. 1972. Affinity chromatography of lactate dehydrogenase: model studies demonstrating the potential of the technique in the mechanistic investigation as well as in the purification of multi-substrate enzymes. FEBS Letters 21, 281-285 https://doi.org/10.1016/0014-5793(72)80183-2
  32. O'Carra, P., S. Barry and E. Corcoran. 1974. Affinity chromatographic differentiation of lactate dehydrogenase isoenzymes on the basis of differential abortive complex formation. FEBS Letters 43, 163-168 https://doi.org/10.1016/0014-5793(74)80992-0
  33. Ozemyuk, O. D., O. S. Klyachko and E. S. Polosukhina. 1994. Acclimation temperature affects the functional and structural properties of lactate dehydrogenase from fish (Misgurnus fossilis) skeletal muscles. Comp. Biochem. Physiol. 107B, 141-145
  34. Panepucci, L. L. L., M. L. Schwantes and A. R. Schwantes. 1984. Loci that encode the lactate dehydrogenase in 23 species of fish belonging to the orders Cypriniformes, Siluriformes and Perciformes: adaptative features. Comp. Biochem. Physiol. 77B, 867-876
  35. Park, S. Y. and J. J. Yum. 1997. Purification and characterization of lactate dehydrogenase eye- and testis-specific C4 isozyme. J. Ind. Sci. Cheongju Univ. 15, 263-268
  36. Park, S. Y., S. K. Cho and J. J. Yum. 2004. Characterization and evolutionary relationship of lactate dehydrogenase in liver of Lampetra japonica and liver-specific C4 isozyme in Gadus macrocephalus. J. Life Sci. 14, 708-715 https://doi.org/10.5352/JLS.2004.14.4.708
  37. Philp, A., A. L. Macdonald and P. W. Watt. 2005. Lactate-a signal coordination cell and systemic function. J. Exp. Biol. 208, 4561-4575 https://doi.org/10.1242/jeb.01961
  38. Rehse, P. H. and W. S. Davidson. 1986. Evolutionary relationship of a fish C type lactate dehydrogenase to other vertebrate lactate dehydrogenase isozymes. Can. J. Fish. Aquat. Sci. 43, 1041-1051
  39. Sensabaugh, G. F. and N. O. Kaplan. 1972. A lactate dehydrogenase specific to the liver of gadoid fish. J. Biol. Chem. 247, 585-593
  40. Shaklee, J. B. and G. S. Whitt. 1981. Lactate dehydrogenase isozymes of Gadiform fishes: divergent patterns of gene expression indicate a eterogeneous taxon. Copeia 3, 567-578
  41. Srere, P. A., H. Brazil and L. Gonen. 1963. Citrate condensing enzyme of pigeon breast muscle and moth flight muscle. Acta Chem. Scand. 17, S129-134 https://doi.org/10.3891/acta.chem.scand.17s-0129
  42. Torres-da Marra, J., C. B. Silva and A. Hasson-Voloch. 1986. Effect of ATP on purified L(+) lactate dehydrogenase from electric organ of Electrophorus electricus (L). Int. J. Biochem. 18, 191-194 https://doi.org/10.1016/0020-711X(86)90156-4
  43. Tylicki, A., D. Masztaleruk, and S. Strumilo. 2006. Differences in some properties of lactate dehydrogenase from muscles of the carp Cyprinus carpio and trout Salmo gairdneri. Comp. Onto. Biochem. 42, 143-147
  44. Val, A. L. and V. M. F. de Almeida-Val. 1995. Aerobic versus anaerobic pathways. pp. 148-151. In Fishes of the amazone and their environment: physiological and biochemical aspect, New York, Springer-Verlag, Berlin, Heidelberg
  45. Whitt, G. S. 1970. Developmental genetics of the lactate dehydrogenase isozymes of fish. J. Exp. Zool. 175, 1-36 https://doi.org/10.1002/jez.1401750102
  46. Whitt, G. S., E. T. Millet and J. B. Shaklee. 1973. Developmental and biochemical genetics of lactate dehydrogenase isozymes in fishes. pp. 243-276, In Schroder, J. H. (eds.), Genetics and Mutagenesis in Fish, Spring Verlag, Berlin
  47. Yum, J. J and M. O. Kim. 1989. Biochemical properties of lactate dehydrogenase isozymes in Pseudogobio esocinus. J. Ind. Sci. Cheongju Univ. 7, 151-162

Cited by

  1. Kinetic Properties of Lactate Dehydrogenase in Tissues from Rana catesbeiana vol.24, pp.2, 2014, https://doi.org/10.5352/JLS.2014.24.2.118
  2. Early diagnosis of radiodermatitis using lactate dehydrogenase isozymes in hairless mice (SKH1-hr) vol.28, pp.4, 2012, https://doi.org/10.5625/lar.2012.28.4.239
  3. Lactate Dehydrogenase and Monocarboxylate Transporters 1, 2, and 4 in Tissues of Micropterus salmoides vol.22, pp.1, 2012, https://doi.org/10.5352/JLS.2012.22.1.98
  4. Metabolism of Lactate Dehydrogenase in Tissues from Ldh-C Expressed Fish at Starved State vol.26, pp.2, 2016, https://doi.org/10.5352/JLS.2016.26.2.155
  5. Metabolic Adjustments of Lactate Dehydrogenase Isozymes to the Environmental Temperature in Bluegill (Lepomis macrochirus) vol.26, pp.10, 2016, https://doi.org/10.5352/JLS.2016.26.10.1105
  6. Biochemical Properties of Lactate Dehydrogenase Eye-Specific C4Isozyme: Lepomis macrochirus and Micropterus salmoides vol.22, pp.2, 2012, https://doi.org/10.5352/JLS.2012.22.2.209
  7. Purification and Characterization of Lactate Dehydrogenase Isozymes in Channa argus vol.20, pp.2, 2010, https://doi.org/10.5352/JLS.2010.20.2.260
  8. Purification and Characterization of Eye-Specific Lactate Dehydrogenase C4Isozyme in Greenling (Hexagrammos otakii) vol.21, pp.11, 2011, https://doi.org/10.5352/JLS.2011.21.11.1565