DOI QR코드

DOI QR Code

Detection of a Quorum-Sensing Inhibitor from the Natural Products

천연물로부터 Quorum Sensing 저해제의 탐색

  • Kim, Tae-Woo (Division of Biological Science, Pusan National University) ;
  • Cha, Ji-Young (Division of Biological Science, Pusan National University) ;
  • Lee, Jun-Seung (Division of Biological Science, Pusan National University) ;
  • Min, Bok-Kee (Dept. of Biomedical Laboratory Science, Eulji University) ;
  • Baik, Hyung-Suk (Division of Biological Science, Pusan National University)
  • 김태우 (부산대학교 생명과학부) ;
  • 차지영 (부산대학교 생명과학부) ;
  • 이준승 (부산대학교 생명과학부) ;
  • 민복기 (을지의과대학교 임상병리학과) ;
  • 백형석 (부산대학교 생명과학부)
  • Published : 2008.02.28

Abstract

The quorum sensing (QS) regulatory network has been the subject of extensive studies during recent years and has also attracted a lot of attention because it both positively and negatively regulates various putative virulence factors, although initially considered to be a specialized system of Vibrio fischeri and related species. In this study, to identify the novel materials which inhibit QS system of microorganisms, extracts of eighteen natural products were tested by bioassay using N-(3-oxohexanoyl)-$_L$-homoserine lactone and N-(3-oxooctanoyl)-$_L$-homoserine lactone synthesized in this experiment and an Agrobacterium tumefaciens NT1 biosensor strain containing a traI::lacZ fusion. The result indicated that the extracts of cabbage, leek, and onion exhibited the QS inhibition activity. Thus, materials contained in the extracts were isolated via recycling preparative HPLC and were purified via a JAIGEL-LS255 column. The common fraction corresponding to a peak of the 83 min point of them quenched the quorum sensing of A. tumefaciens NT1 biosensor strain in ABMM containing X-gal and was designated quorum sensing inhibitor-83 min (QSI-83). The QSI-83 exhibited the heat stability and did not inhibit the growth of A. tumefaciens NTl. Furthermore, thin layer chromatography (TLC) results suggested that these novel materials may be antagonists of N-acyl homoserine lactone or may inhibit the QS autoinducer synthesis by Pseudomonas syringae pv. tabaci.

인간이 서로 간의 의사소통을 위해 언어를 사용하듯이, 세균의 경우도 외부 환경 변화를 신속히 감지하여 서로 효과적으로 대응하기 위해서 주변 세포들과 소통할 수 있는 세균만의 독특한 화학적 언어를 사용하는 것으로 알려져 있다. 특히, 일정 세포 농도에 도달했을 때 자체적으로 생산된 화학적 신호를 통해 개체 수를 인지하고 그에 따라 특정 유전자의 발현을 동시에 조절하는 quorum sensing (QS) 기작은 다양한 세균 종들에서 광범위하게 존재한다. 본 연구는 다양한 천연물 추출물들을 대상으로 QS 저해 활성을 확인하였는데 QS 지시균주인 Agrobacterium tumefaciens NT1과 화학적으로 합성한 QS autoinducers을 사용한 bioassay를 수행하였다. 그 결과 양배추, 파, 양파의 추출물들에서 QS 저해 활성을 확인하였고, recycling preparative HPLC (prep-HPLC)를 통한 정제 과정을 통해, 83분 지점의 peak에 해당하는 성분들이 공통으로 QS 저해 활성을 가지고 있음을 확인하였다. 따라서 그 QS 저해 성분을 QSI-83으로 지정하고 thin layer chromatography (TLC)를 통해 P. syringae pv. tabaci의 autoinducers 합성을 저해하는 활성을 가지고 있음을 확인하였다. 또한 열에 대한 안정성과 세균 생장에서의 영향을 조사하였는데, 그 결과 QSI-83은 열에 안정하며 세균의 생장에는 영향을 끼치지 않는 물질임을 확인하였다. 따라서 우리는 천연물로부터 분리된 새로운 성분이 QS 저해제로서 이용될 수 있음을 제안한다.

Keywords

References

  1. Bassler, B. L. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2, 582-587 https://doi.org/10.1016/S1369-5274(99)00025-9
  2. Beck, von B. S., R. Majerczak and L. Coplin. 1998. Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by the N-acyl homoserine lactone autoinducer. J. Bacteriol. 177, 5000-5008
  3. Bjarnsholt, T., P. O. Jensen, T. B. Rasmussen, L. Christophersen, H. Calum, M. Hentzer, H. P. Hougen, J. Rygaard, C. Moser, L. Eberl, N. Hoiby and M. Givskov. 2005. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151, 3873-3880 https://doi.org/10.1099/mic.0.27955-0
  4. Catharine, E. W. and S. C. Winans. 2005. Identification of amino acid residues of the Agrobacterium tumefaciens quorum-sensing regulator TraR that is critical for positive control of transcription. Molecular Microbiology 55, 1473-1486 https://doi.org/10.1111/j.1365-2958.2004.04482.x
  5. Dong, Y. H., J. L. Xu, X. Z. Li and L. H. Zhang. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97, 3526- 3531 https://doi.org/10.1073/pnas.97.7.3526
  6. Fuqua, C. and E. P. Greenberg. 2002. Listening in on bacteria:acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell Biol. 3, 685-695 https://doi.org/10.1038/nrm907
  7. Gram, L., R. de Nys, R. Maximilien, M. Givskov, P. Steinberg and S. Kjelleberg. 1996. Inhibitory effects of secondary metabolites from the red alga Delisea pulchra on swarming motility of Proteus mirabilis. Appl. Environ Microbiol. 62, 4284-4287
  8. Kendall, M. G. 1997. Intracellular communication and group behavior in bacteria. Trends Microbiol. 5, 184-188 https://doi.org/10.1016/S0966-842X(97)01002-0
  9. King, E. O., M. K. Ward and D. E. Raney. 1954. Two simple media for the demonstration of pyrocyanin and fluorescein. J. Lab. Clin. Med. 44, 301-313
  10. Marvin, W., M. L. Kimberly and E. P. Greenberg. 1999. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96, 13904-13909 https://doi.org/10.1073/pnas.96.24.13904
  11. McLean, R. J., L. S. Pierson and C. Fuqua. 2004. A simple screening protocol for the identification of quorum signal antagonists. J. Microbiol Methods 58, 351-360 https://doi.org/10.1016/j.mimet.2004.04.016
  12. Michiko, E. T. and L. B. Bonnie. 2003. Chemical communication among bacteria. Proc. Natl. Acad. Sci. USA 100, 14549-14554 https://doi.org/10.1073/pnas.1934514100
  13. Mizuho, M., Y. Takagi, H. Yonezawa, N. Hanada, J. Terajima, H. Watanabe and H. Senpuku. 2006. Assessment of genes associated with Streptococcus mutans biofilm morphology. Appl. Environ. Microbiol. 72, 6277-6287 https://doi.org/10.1128/AEM.00614-06
  14. Paul, D. S., P. Gao Ping, S. L. Daly, C. Cha, J. E. Cronan, Jr. and K. L. Rinehart. 1997. Detecting and characterizing N-acyl homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 94, 6036-6041 https://doi.org/10.1073/pnas.94.12.6036
  15. Pesci, E. C., J. B. Milbank, J. P. Pearson, S. McKnight, A. S. Kende, E. P. Greenberg and B. H. Iglewski. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96, 11229-11234 https://doi.org/10.1073/pnas.96.20.11229
  16. Moons, P., R. Van Houdt, A. Aertsen, K. Vanoirbeek, Y. Engelborghs and C. W. Michiels. 2006. Role of quorum sensing and antimicrobial component production by Serratia plymuthica in formation of biofilms, including mixed biofilms with Escherichia coli. Appl. Environ. Microbiol. 72, 7294-7300 https://doi.org/10.1128/AEM.01708-06
  17. Smith, R. S. and B. H. Iglewski. 2003. Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J. Clin. Invest. 112, 1460-1465 https://doi.org/10.1172/JCI200320364
  18. Shaw, P. D., G. Ping, S. L. Daly, C. Cha, J. E. Cronan, Jr., K. L. Rinehart and S. K. Farrand. 1997. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. The National Academy of Sciences 94, 6036-6041 https://doi.org/10.1073/pnas.94.12.6036
  19. Pamp, S. J. and T. Tolker-Nielsen. 2007. Multiple Roles of Biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 189, 2531-2539 https://doi.org/10.1128/JB.01515-06
  20. Taguchi, F., Y. Ogawa, K. Takeuchi, T. Suzuki, K. Toyoda, T. Shiraishi and Y. Ichinose. 2006. A homologue of the 3-oxoacyl-(acyl carrier protein) synthase III gene located in the glycosylation island of Pseudomonas syringae pv. tabaci regulates virulence factors via N-acyl homoserine lactone and fatty acid synthesis. J. Bacteriol. 188, 8376-8384 https://doi.org/10.1128/JB.00763-06