Investigation of the La1-x(Ca or Sr)xCrO3x=0 and 0.25) Interconnect Materials for High Temperature Electrolysis of Steam

고온수증기전기분해용 La1-x(Ca or Sr)xCrO3(x=0 and 0.25) 연결재 재료 연구

  • Jeong, So-Ra (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Kang, Kyoung-Soo (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Park, Chu-Sik (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Lee, Yong-Taek (Department of Chemical Engineering, Chungnam National University) ;
  • Bae, Ki-Kwang (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Kim, Chang-Hee (Hydrogen Energy Research Center, Korea Institute of Energy Research)
  • Received : 2008.08.20
  • Accepted : 2008.09.25
  • Published : 2008.12.31

Abstract

The $La_{1-x}(Ca\;or\;Sr)xCrO_3$(x=0 and 0.25) interconnect materials for high temperature electrolysis of steam were investigated in views of sinterability and electrical conductivity. $LaCrO_3$, $La_{0.75}Ca_{0.25}CrO_3$ (LCC), and $La_{0.75}Sr_{0.25}CrO_3$ (LSC) powders were synthesized by coprecipitation method. Crystal structure was confirmed by X-ray diffraction (XRD). The sintering characteristics were analyzed by relative density and scanning electron microscopy. The electrical conductivity was measured by a DC four probe method. From the analyses of relative densities, it was found that the doped $LaCrO_3$ showed better sinterability than $LaCrO_3$ and the those sinterability increased with decrease of those particle sizes. The XRD results at different sintering temperatures for LCC and LSC revealed that the sinterability is closely related to the second phase transformation, that is, the second phase melting above $1,300^{\circ}C$ for LCC and $1,400^{\circ}C$ for LSC significantly promotes the sinterability. In case of electrical conductivities of LCC and LSC, which had a similar relative density, LCC showed better electrical conductivity than LSC.

고온 수증기 전기분해용 $La_{1-x}(Ca\;or\;Sr)xCrO_3$(x=0 and 0.25) 연결재 재료의 소결도와 전기 전도도에 대해서 연구하였다. 이러한 목적으로 $LaCrO_3$, $La_{0.75}Ca_{0.25}CrO_3$(LCC)와 $La_{0.75}Sr_{0.25}CrO_3$(LSC) 분말들은 공침법을 통해 합성하였으며, 결정구조는 X-Ray Diffraction(XRD)를 통해 확인하였다. 소결 특성은 상대밀도와 주사 전자현미경을 통해 분석하였고 전기 전도도는 직렬 4-단자 법으로 측정하였다. 상대 밀도 분석으로부터 도핑된 $LaCrO_3$$LaCrO_3$보다 더 높은 소결성을 나타내었고, 입자 크기가 작을수록 소결성이 향상하는 것을 확인 할 수 있었다. 다양한 소결온도에서 얻은 LCC, LSC 시편들의 XRD 결과는 LCC와 LSC의 소결성이 2차상의 상전이와 밀접한 관련이 있다는 사실을 나타내었다. 다시 말해, LCC는 $1,300^{\circ}C$ 이상, LSC는 $1,400^{\circ}C$ 이상에서 2차상이 융해됨으로써 소결성을 현저하게 향상시킨다는 것을 알 수 있었다. 그리고 비슷한 상대밀도를 가진 LCC와 LSC의 전기 전도도를 비교 측정한 결과, LCC가 LSC보다 더 높은 전기 전도도를 나타낸다는 것을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. Kobayashi, T., Abe, K., Ukyo, Y. and Matsumoto, H., 'Study on Current Effisciency of Steam Electrolysis using a Partial Protonic Conductor $SrZr_{0.9}Yb_{0.1}O_3-a$,' Solid State Ionics, 138, 243-251(2001) https://doi.org/10.1016/S0167-2738(00)00793-1
  2. Chae, U. S., Park, K. M., Seon, H. H., Choo, S. T. and Yun, Y. S., 'Preparation and Characteristics of Nodified Ni/YSZ Cermet for High Temperature Electrolysis,' Trans. of the Korean Hydrogen and New Energy Soc., 15(2), 98-107(2004)
  3. Hino, R., Haga, K., Aitab, H. and Sekita, K., 'R&D On Hydrogen Production by High-temperature Electrolysis of Steam,' Nuclear Engineering and Design, 233, 363-375(2004) https://doi.org/10.1016/j.nucengdes.2004.08.029
  4. Simner, S., Hardy, J., Stevenson, J. and Armstrong, T., 'Sintering Mechanism in Strontium Doped Lanthanum Chromite,' J. Mater. Sci., 34, 5721-5732(1999) https://doi.org/10.1023/A:1004745915378
  5. Zhu, W. Z. and Deevi, S. C., 'Development of Interconnect Materials for Solid Oxide Fuel Cells,' Mater. Sci. Eng., A348, 228-229(2003)
  6. Sammes, N. M. and Ratnaraj, R., 'The Effect of Sintering on the Mechanical Properties of SOFC Ceramic Interconnect Materials,' J. Mater. Sci., 29, 4319-4324(1994) https://doi.org/10.1007/BF00414217
  7. Paulik, S. W., Baskaran, S. and Armstrong, T. R., 'Mechanical Properties of Calcium- and Strontium- Substituted Lanthanum Chromite,' J. Mater. Sci., 33, 2397-2404(1998) https://doi.org/10.1023/A:1004359925766
  8. Chakraborth, A., Basu, R. N. and Maiti, H. S., 'Low Temperature Sintering of $La(Ca)CrO_3$ Prepared by an Autoignition Process,' Mater. Lett., 45, 162-166(2000) https://doi.org/10.1016/S0167-577X(00)00098-7
  9. Subasri, R., Mathews, T., Swaminathan, K. and Sreedharan, O. M., 'Microwave Assisted Synthesis of $La_1-XSr_XCrO_3$(x=0.05, 0.15 and 0.30) and their Thermodynamic Characterization by Fluoride Emf Method,' J. Alloys Comps., 354, 193-197(2003) https://doi.org/10.1016/S0925-8388(03)00003-3
  10. Cheng, J. and Navrotsky, A., 'Energetics of $La_1x-A_XCrO_3-a$ Perovskite(A=Ca or Sr),' J. Solid State Chemistry., 178, 234-244(2005) https://doi.org/10.1016/j.jssc.2004.11.028
  11. Sakai, N., Kawada, T., Yokokawa, H. and Dokiya, M., 'Sinterability and Electrical Conductivity of Calcium-Doped Lanthanum Chromites,' J. Mater. Sci., 25, 4531-4534(1990) https://doi.org/10.1007/BF00581119
  12. Minh, N. Q., 'Ceramic Fuel Cells,' J. Am. Ceram. Soc., 76, 563-588(1993) https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  13. Wang, J., Ponton, C. B. and Marquis, P. M., 'Sintering and Microstructrural Development of $La_{0.8}Ca_{0.22}CrO_3$,' J. Mater. Sci. Lett., 15, 658-661(1996) https://doi.org/10.1007/BF00264104
  14. Boroomand, F., Wessel, E., Bausinger, H. and Hilpert, K., 'Correlation between Defect Chemistry and Expansion during Reduction of Doped $LaCrO_3$ Interconnects for SOFCS,' Solid State Ionics., 129, 251-258(2000) https://doi.org/10.1016/S0167-2738(99)00330-6
  15. Zuev, A., Singheiser, L. and Hilpert, K., 'Defect Structure and Isothermal Expansion of A-site and B-site Substituted Lanthanum Chromite,' Solid State Ionics, 147, 1-11(2002) https://doi.org/10.1016/S0167-2738(02)00010-3
  16. Meadowcroft, D. B. and Wimmer, J. M., 'Oxidation and Vaporization Processes in Lanthanum Chromite,' Amer. Ceram. Soc. Bull., 58(6), 610-615(1979)
  17. Devi, P. S. and Fao, M. S., 'Preparation, Structure, and Properties of Strontium-Doped Lanthanum Chromites : $La_1-xSr_xCrO_3$,' J. Solid State Chemistry, 98, 237-244(1992) https://doi.org/10.1016/S0022-4596(05)80231-2
  18. Ding, X., Liu, Y., Gao, L. and Guo, L., 'Effects of Cation Substitution on Thermal Expansion and Electrical Properties of Lanthanum Chromites,' J. Alloys Comps., 425, 318-322(2006) https://doi.org/10.1016/j.jallcom.2006.01.030
  19. Zhou, X., Ma, J., Deng, F., Meng, G. and Liu, X., 'Preparation and Properties of Ceramic Interconnecting Materials, $La_{0.7}Ca_{0.3}CrO_3-a$ Doped with GDC for IT-SOFCS,' J. Power Sources, 162, 279-285(2006) https://doi.org/10.1016/j.jpowsour.2006.06.091
  20. Zhou, X. L., Ma, J. J., Deng, F. J., Meng, G. Y. and Liu, X. Q., 'A High Performance Interconnecting Ceramics for Solid Oxide Fuel Cells(SOFCs),' Solid State Ionics, 177, 3461-3466(2007) https://doi.org/10.1016/j.ssi.2006.10.007
  21. Hayashi, S., Fukaya, K. and Saito, H., 'Sintering of Lanthanum Chromite Doped with Zinc or Copper,' J. Mater. Sci. Lett., 7, 457-458(1988) https://doi.org/10.1007/BF01730687
  22. Sakai, N., Kawada, T., Yokokawa, H. and Dokiya, M., 'Thermal Expansion of some Chromium Deficient Lanthanum Chromites,' Solid State Ionics, 40-41, 394(1990) https://doi.org/10.1016/0167-2738(90)90365-X
  23. Duvigneaud, P. H., Pilate, P. and Cambier, F., 'Factors Affecting the Sintering and the Electrical Properties of Sr-Doped $LaCrO_3$,' J. Eur. Ceram. Soc., 14, 359-360(1994) https://doi.org/10.1016/0955-2219(94)90073-6
  24. Zupan, K., Kolar, D. and Marinsek, M., 'Influence of Citrate-Nitrate Reaction Mixture Packing on Ceramic Powder Properties,' J. Power Sources, 86, 417-422(2000) https://doi.org/10.1016/S0378-7753(99)00406-1
  25. Ianculescu, A., Braileanu, A., Pasuk, I. and Zaharescu, M., 'Phase For-mation Study of Alkaline Earth-Doped Lanthanum Chromites,' J. Therm. Anal. Calorim., 66, 501-507(2001)
  26. Suda, E., Pacaud, B., Seguelong, T. and Takeda, Y., 'Sintering Characteristics and Thermal Expansion Behavior of Li-Doped Lanthanum Chormite Perovskites depending upon Preparation Method and Sr Doping,' Solid State Ionics, 151, 335-341(2002) https://doi.org/10.1016/S0167-2738(02)00533-7
  27. Karim, D. P. and Aldred, A. T., 'Localized Level Hopping Transport in $La(Sr)CrO_3$,' Phys. Rev. B, 20, 2255-2263(1979) https://doi.org/10.1103/PhysRevB.20.2255
  28. Mori, M., Yamamoto, T., Itoh, H. and Watanabe, T., 'Compatibility of Alkaline Earth Metal(Mg,Ca,Sr)-Doped Lanthanum Chromites as Separators in Planar Type High Temperature Solid Oxide Fuel Cells,' J. Mater. Sci., 32, 2423-2431(1997) https://doi.org/10.1023/A:1018565409603
  29. Armstrong, T. R., Stevenson, J. W., Hasinska, K. and McCready, D. E., 'Synthesis and Properties of Mixed Lanthanide Chromite Perovsktie,' J. Electrochem. Soc., 145, 4282-4289(1998) https://doi.org/10.1149/1.1838952
  30. Tanasescu, S., Orasanu, A., Berger, D., Jitaru, I. and Schoonman J., 'Electrical Conductivity and Thermodynamic Properties of some Alkaline Earth-Doped Lanthanum Chromites,' International Journal of Thermophysics, 26, 543-557(2005) https://doi.org/10.1007/s10765-005-4516-7
  31. Jiang, S. P., Liu, L., Ong, K. P., Wu, P. and Pu, J., 'Electrical Conductivity and Performance of Doped $LaCrO_3$ Perovskite Oxides for Solid Oxide Fuel Cells,' J. Power Sources, 176, 82-89(2008) https://doi.org/10.1016/j.jpowsour.2007.10.053
  32. Yang, Y. J., Wen, T. L., Tu, H., Wang, D. Q. and Yang J., 'Characteristics of Lanthanum Strontium Chromite Prepared by Glycine Nitrate Process,' Solid State Ionics, 135, 475-479(2000) https://doi.org/10.1016/S0167-2738(00)00402-1
  33. More, M., Hiei, Y. and Sammes, N. M., 'Sintering Behavior of Ca- or Sr-Doped LaCrO3 Perovsktes including Second Phase of AE$CrO_4$ (AE=Sr, Ca) in Air,' Solid State Ionics, 135, 743-748(2000) https://doi.org/10.1016/S0167-2738(00)00372-6
  34. Yokokawa, H., Sakai, N., Kawada, T. and Dokiya, M., 'Chemical Thermodynamic Considerations in Sintering of $LaCrO_3$-based Perovskites,' J. Electrochem. Soc., 138, 1018-1027(1991) https://doi.org/10.1149/1.2085708
  35. Horita, T., Ishikawa, M., Yamaji, K., Sakai, N., Yokokawa, H. and Dokiya, M., 'Cation Diffusion in (La,Ca)CrO_3$ Perovskite by SIMS,' Solid State Ionics, 108, 383-390(1998) https://doi.org/10.1016/S0167-2738(98)00067-8
  36. Mori, M., Hiei, Y. and Sammes, N. M., 'Sinterin Behavior and Mechanism of Sr-Doped Lanthanum Chromites with A site Excess Composition in Air,' Solid State Ionics, 123, 103-111(1999) https://doi.org/10.1016/S0167-2738(99)00097-1
  37. Kumar, A., Sujatha Devi, P. and Maiti, H. S., 'A Novel Approach to Develop Dense Lanthanum Calcium Chromite Sintered Ceramics with very High Conductivity,' Chem, Mater., 16, 5562-5563(2004) https://doi.org/10.1021/cm048738t
  38. Peck, D. H., Miller, M. and Hilpert, K., 'Phase Diagrams Studies in the $SrO-Cr_2O_3-La_2O_3$ System in Air and Under Low Oxygen Pressure,' Solid State Ionics, 123, 59-65(1999) https://doi.org/10.1016/S0167-2738(99)00088-0
  39. Fergus, J. W., 'Lanthanum Chromite-based Materials for Solid Oxide Fuel Cell Interconnects,' Solid State Ionics, 171, 1-15(2004) https://doi.org/10.1016/j.ssi.2004.04.010