DOI QR코드

DOI QR Code

Arabidopsis nucleoside diphosphate kinase-2 as a plant GTPase activating protein

  • Shen, Yu (Department of Chemistry, University of Nebraska-Lincoln) ;
  • Han, Yun-Jeong (Department of Molecular Biotechnology and Kumho Life Science Laboratory, Chonnam National University) ;
  • Kim, Jeong-Il (Department of Molecular Biotechnology and Kumho Life Science Laboratory, Chonnam National University) ;
  • Song, Pill-Soon (Department of Chemistry, University of Nebraska-Lincoln)
  • Published : 2008.09.30

Abstract

Nucleoside diphosphate kinase (NDPK) is involved in multiple signaling pathways in mammalian systems, including G-protein signaling. Arabidopsis NDPK2, like its mammalian counterparts, is multifunctional despite its initial discovery phytochrome-interacting protein. This similarity raises the possibility that NDPK2 may play a role in G-protein signaling in plants. In the present study, we explore the potential relationship between NDPK2 and the small G proteins, Pra2 and Pra3, as well as the heterotrimeric G protein, GPA1. We report a physical interaction between NDPK2 and these small G proteins, and demonstrate that NDPK2 can stimulate their GTPase activities. Our results suggest that NDPK2 acts as a GTPase-activating protein for small G proteins in plants. We propose that NDPK2 might be a missing link between the phytochrome-mediated light signaling and G protein-mediated signaling.

Keywords

References

  1. Parks, R. E. J. and Agarwal, R. P. (1973) Nucleoside diphosphokinases. Enzymes 8, 307-334 https://doi.org/10.1016/S1874-6047(08)60069-4
  2. Zhu, J., Reynet, C., Caldwell, J. S. and Kahn, C. R. (1995) Characterization of Rad, a new member of Ras/GTPase superfamily, and its regulation by a unique GTPase-activating protein (GAP)-like activity. J. Biol. Chem. 270, 4805-4812 https://doi.org/10.1074/jbc.270.9.4805
  3. Zhu, J., Tseng, Y.-H., Kantor, J. D., Rhodes, C. J., Zetter, B. R., Moyers, J. S. and Kahn, C. R. (1999) Interaction of the Ras-related protein associated with diabetes rad and the putative tumor metastasis suppressor NM23 provides a novel mechanism of GTPase regulation. Proc. Natl. Acad. Sci. U.S.A. 96, 14911-14918 https://doi.org/10.1073/pnas.96.26.14911
  4. Otsuki, Y., Tanaka, M., Yoshii, S., Kawazoe, N., Nakaya, K. and Sugimura, H. (2001) Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc. Natl. Acad. Sci. U.S.A. 98, 4385-4390 https://doi.org/10.1073/pnas.071411598
  5. Lutz, S., Hippe, H.-J., Niroomand, F. and Wieland, T. (2004) Nucleoside diphosphate kinase-mediated activation of heterotrimeric G proteins. Methods Enzymol. 390, 403-418 https://doi.org/10.1016/S0076-6879(04)90025-0
  6. Hippe, H.-J. and Wieland, T. (2006) High energy phosphate transfer by NDPK B/Gbetagammacomplexes--an alternative signaling pathway involved in the regulation of basal cAMP production. J. Bioenerg. Biomembr. 38, 197-203 https://doi.org/10.1007/s10863-006-9035-0
  7. Kimura, N., Shimada, N., Ishijima, Y., Fukuda, M., Takagi, Y. and Ishikawa, N. (2003) Nucleoside diphosphate kinases in mammalian signal transduction systems: Recent development and perspective. J. Bioenerg. Biomembr. 35, 41-47 https://doi.org/10.1023/A:1023489722460
  8. Narayana, R. and Ramaswami, M. (2003) Regulation of Dynamin by Nucleoside Diphosphate Kinase. J. Bioenerg. Biomembr. 35, 49-55 https://doi.org/10.1023/A:1023441806530
  9. Postel, E. H. (2003) Multiple biochemical activities of NM23/NDP kinase in gene regulation. J. Bioenerg. Biomembr. 35, 31-40 https://doi.org/10.1023/A:1023485505621
  10. Hasunuma, K., Yabe, N., Yoshida, Y., Ogura, Y. and Hamada, T. (2003) Putative functions of nucleoside diphosphate kinase in plants and fungi. J. Bioenerg. Biomembr. 35, 57-65 https://doi.org/10.1023/A:1023493823368
  11. Choi, G., Yi, H., Lee, J., Kwon, Y.-K., Soh, M.-S. , Shin, B., Luka, Z., Hahn, T.-R. and Song, P.-S. (1999) Phytochrome signaling is mediated through nucleoside diphosphate kinase 2. Nature 401, 610-613 https://doi.org/10.1038/44176
  12. Shen, Y., Kim, J.-I. and Song, P.-S. (2005) NDPK2 as a signal transducer in the phytochrome-mediated light signaling. J. Biol. Chem. 280, 5470-5479
  13. Im, Y. J., Kim, J.-I., Shen, Y., Na, Y., Han, Y.-J., Kim, S.-H., Song, P.-S. and Eom, S. H. (2004) Structural analysis of Arabidopsis thaliana nucleoside diphosphate kinase-2 for phytochrome-mediated light signaling. J. Mol. Biol. 343, 659-670 https://doi.org/10.1016/j.jmb.2004.08.054
  14. Zimmermann, S., Baumann, A., Jaekel, K., Marbach, I., Engelberg, D. and Frohnmeyer, H. (1999) UV responsive genes of Arabidopsis revealed by similarity to the Gcn4 mediated UV response in yeast. J. Biol. Chem. 274, 17017-17024 https://doi.org/10.1074/jbc.274.24.17017
  15. Moon, H., Lee, B., Choi, G., Shin, D., Prasad, D. T., Lee, O., Kwak, S.-S., Kim, D. H., Nam, J., Bahk, J., Hong, J. C., Lee, S. Y., Cho, M. J., Lim, C. O. and Yun, D.-J. (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. U.S.A. 100, 358-363 https://doi.org/10.1073/pnas.252641899
  16. Choi, G., Kim, J.-I., Hong, S. W., Shin, B., Blakeslee, J. J., Murphy, A. S., Seo, Y., Kim, K., Koh, E. J., Song, P.-S. and Lee, H. (2005) A possible role of NDPK2 in the regulation of auxin mediated responses for plant growth and development. Plant Cell Physiol. 46, 1246-1254 https://doi.org/10.1093/pcp/pci133
  17. Perfus-Barbeoch, L., Jones, A. M. and Assmann, S. M. (2004) Plant heterotrimeric G protein function: insights from Arabidopsis and rice mutants. Curr. Opin. Plant Biol. 7, 719-731 https://doi.org/10.1016/j.pbi.2004.09.013
  18. Assmann, S. M. (2005) G proteins go green: A plant G protein signaling FAQ sheet. Science 310, 71-73 https://doi.org/10.1126/science.1118580
  19. Vernoud, V., Horton, A. C., Yang, Z. and Nielson, E. (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol. 131, 1191-1208 https://doi.org/10.1104/pp.013052
  20. Okamoto, H., Matsui, M. and Deng, X.-W. (2001) Overexpression of the heterotrimeric G-protein alpha-subunit enhances phytochrome-mediated inhibition if hypocotyls elongation in Arabidopsis. Plant Cell 13, 1639-1651 https://doi.org/10.1105/tpc.13.7.1639
  21. Romero, L. C., Sommer, D., Gotor, C. and Song, P.-S. (1991) G-proteins in etiolated Avena seedlings, Possible phytochrome regulation. FEBS Lett. 282, 341-346 https://doi.org/10.1016/0014-5793(91)80509-2
  22. Remero, L. C. and Lam, E. (1993) Guanine nucleotide binding protein involvement in early steps of phytochrome- regulated gene expression. Proc. Natl. Acad. Sci. U.S.A. 90, 1465-1469 https://doi.org/10.1073/pnas.90.4.1465
  23. Neuhaus, G., Bowler, C., Kern, R. and Chua, N.-H. (1993) Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell 73, 937-952 https://doi.org/10.1016/0092-8674(93)90272-R
  24. Sommer, D. and Song, P.-S. (1994) Isolation and purification of a small-molecular-weight GTP-binding protein from plants. Protein Expr. Purif. 5, 402-408 https://doi.org/10.1006/prep.1994.1058
  25. Yoshida, K., Nagano, Y., Murai, N. and Sasaki, Y. (1993) Phytochrome-regulated expression of the genes encoding the small GTP-binding proteins in peas. Proc. Natl. Acad. Sci. U.S.A. 90, 6636-6640 https://doi.org/10.1073/pnas.90.14.6636
  26. Nagano, Y., Okada, Y., Narita, H., Asaka, Y. and Sasaki, Y. (1995) Location of light-repressible, small GTP-binding protein of the YPT/rab family in the growing zone of the etiolated pea stems. Proc. Natl. Acad. Sci. U.S.A. 92, 6314-6318 https://doi.org/10.1073/pnas.92.14.6314
  27. Inaba, T., Nagano, Y., Sakakibara, T. and Sasaki, Y. (1999) Identification of a cis-regulatory element involved in phytochrome down-regulated expression of the pea small GTPase gene pra2. Plant Physiol. 120, 491-499 https://doi.org/10.1104/pp.120.2.491
  28. Kang, J.-G., Yun, J., Kim, D.-H., Chung, K.-S., Fujioka, S., Kim, J.-I., Dae, H.-W., Yoshida, S., Takatsuti, S., Song, P.-S. and Park, C.-M. (2001) Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105, 625-636 https://doi.org/10.1016/S0092-8674(01)00370-1
  29. Ma, H., Yanofsky, M. F. and Meyerowitz, E. M. (1990) Molecular cloning and characterization of GPA1, a G protein ${\alpha}$ subunit gene from Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 87, 3821-3825 https://doi.org/10.1073/pnas.87.10.3821
  30. Ma, H. (2001) Plant G proteins: the different faces of GPA1. Curr. Biol. 11, 869-871 https://doi.org/10.1016/S0960-9822(01)00260-3
  31. Weiss, C. A., Garnaat, C. W., Mukai, K., Hu, Y. and Ma, H. (1994) Isolation of cDNAs encoding guanine nucleotide- binding protein $\beta$-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proc. Natl. Acad. Sci. U.S.A. 91, 9554-9558 https://doi.org/10.1073/pnas.91.20.9554
  32. Mason, M. G. and Botella, J. R. (2000) Completing the heterotrimer: Isolation and characterization of an Arabidopsis thaliana G protein $\gamma$-subunit cNDA. Proc. Natl. Acad. Sci. U.S.A. 97, 14784-14788 https://doi.org/10.1073/pnas.97.26.14784
  33. Mason, M. G. and Botella, J. R. (2001) Isolation of a novel G-protein $\gamma$-subunit from Arabidopsis thaliana and its interaction with G$\beta$. Biochim. Biophys. Acta 1520, 147-153 https://doi.org/10.1016/S0167-4781(01)00262-7
  34. Weiss, C. A., Huang, H. and Ma, H. (1993) Immunolocalization of the G-protein $\alpha$ subunit encoded by the GPA1 gene in Arabidopsis. Plant Cell 5, 1513-1528 https://doi.org/10.1105/tpc.5.11.1513
  35. Obrdlik, P., Neuhaus, M. and Merkle, T. (2000) Plant heterotrimeric G protein beta subunit is associated with membranes via protein interactions involving coiled-coil formation. FEBS Lett. 476, 208-212 https://doi.org/10.1016/S0014-5793(00)01706-3
  36. Lapik, Y. R. and Kaufman, L. S. (2003) The Arabidopsis cubin domain protein AtPirin1 interacts with the G protein alpha-subunit GPA1 and regulates seed germination and early seedling development. Plant Cell 15, 1578-1590 https://doi.org/10.1105/tpc.011890
  37. Ullah, H., Chen, J.-G., Temple, B., Boyes, D. C., Alonso, J. M., Davis, K. R., Ecker, J. R. and Jones, A. M. (2003) The $\beta$-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple development processes. Plant Cell 15, 393-409 https://doi.org/10.1105/tpc.006148
  38. Chen, J.-G., Gao, Y. and Jones, A. M. (2006) Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. Plant Physiol. 141, 887-897 https://doi.org/10.1104/pp.106.079202
  39. Anderson, D. J. and Botella, J. R. (2007) Expression analysis and subcellular localization of the Arabidopsis thaliana G protein $\beta$-subunit AGB1. Plant Cell Rep. 26, 1469-1480 https://doi.org/10.1007/s00299-007-0356-1
  40. Trusov, Y., Rookes, J. E., Tilbrook, K., Chakravorty, D., Mason, M. G., Anderson, D., Chen, J.-G., Jones, A. M. and Botella, J. R. (2007) Heterotrimeric G protein $\gamma$-sub-units provide functional selectivity in G$\beta\gamma$ dimmer signaling in Arabidopsis. Plant Cell 19, 1235-1250 https://doi.org/10.1105/tpc.107.050096
  41. Wang, S., Narendra, S. and Fedoroff, N. (2007) Heterotrimeric G protein signaling in the Arabidopsis unfolded protein response. Proc. Natl. Acad. Sci. U.S.A. 104, 3817-3822 https://doi.org/10.1073/pnas.0611735104
  42. Jones, A. M., Ecker, J. R. and Chen, J. G. (2003) A reevaluation of the role of the heterotrimeric G protein in coupling light responses in Arabidopsis. Plant Physiol. 131, 1623-1627 https://doi.org/10.1104/pp.102.017624
  43. Cuello, F., Schulze, R. A., Heemeyer, F., Meyer, H. E., Lutz, S., Jakobs, K. H., Niroomand, F. and Wieland, T. (2003) Activation of heterotrimeric G proteins by a high energy phosphate transfer via nucleoside diphosphate kinase (NDPK) B and $G{\beta}$ subunits, Complex formation of NDPK B with $G{\beta}{\gamma}$ dimers and phosphorylation of His-266 in $G{\beta}$. J. Biol. Chem. 278, 7220-7226 https://doi.org/10.1074/jbc.M210304200
  44. Northup, J. K., Smigel, M. D. and Gilman, A. G. (1982) The guanine nucleotide activating site of the regulatory component of adenylate cyclase. J. Biol. Chem. 257, 11416-11423

Cited by

  1. Heat shock modulates phosphorylation status and activity of nucleoside diphosphate kinase in cultured sugarcane cells vol.29, pp.11, 2010, https://doi.org/10.1007/s00299-010-0917-6
  2. Proteomic analysis of cell suspension cultures of Boesenbergia rotunda induced by phenylalanine: identification of proteins involved in flavonoid and phenylpropanoid biosynthesis pathways vol.111, pp.2, 2012, https://doi.org/10.1007/s11240-012-0188-8
  3. Proteomic and Phytohormone Analysis of the Response of Maize (Zea mays L.) Seedlings to Sugarcane Mosaic Virus vol.8, pp.7, 2013, https://doi.org/10.1371/journal.pone.0070295
  4. Evidence for nucleotide-dependent processes in the thylakoid lumen of plant chloroplasts - an update vol.586, pp.18, 2012, https://doi.org/10.1016/j.febslet.2012.07.005
  5. The Maize (Zea maysL.)Nucleoside Diphosphate Kinase1 (ZmNDPK1)Gene Encodes a Human NM23-H2 Homologue That Binds and Stabilizes G-Quadruplex DNA vol.54, pp.9, 2015, https://doi.org/10.1021/bi501284g
  6. A Shortest-Path-Based Method for the Analysis and Prediction of Fruit-Related Genes in Arabidopsis thaliana vol.11, pp.7, 2016, https://doi.org/10.1371/journal.pone.0159519
  7. White stripe leaf 12 (WSL12), encoding a nucleoside diphosphate kinase 2 (OsNDPK2), regulates chloroplast development and abiotic stress response in rice (Oryza sativa L.) vol.36, pp.5, 2016, https://doi.org/10.1007/s11032-016-0479-6
  8. Protein transphosphorylation during the mutual interaction between phytochrome a and a nuclear isoform of nucleoside diphosphate kinase is regulated by red light vol.81, pp.10, 2016, https://doi.org/10.1134/S0006297916100126
  9. PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals vol.202, pp.4, 2014, https://doi.org/10.1111/nph.12725
  10. Proteomics Analysis of SsNsd1-Mediated Compound Appressoria Formation in Sclerotinia sclerotiorum vol.19, pp.10, 2018, https://doi.org/10.3390/ijms19102946
  11. Modulation of small GTPase activity by NME proteins vol.98, pp.5, 2018, https://doi.org/10.1038/s41374-018-0023-x