DOI QR코드

DOI QR Code

Osteoimmunology: cytokines and the skeletal system

  • Lee, Seoung-Hoon (The Department of Pathology and Laboratory Medicine, The University of Pennsylvania School of Medicine) ;
  • Kim, Tae-Soo (The Department of Pathology and Laboratory Medicine, The University of Pennsylvania School of Medicine) ;
  • Choi, Yong-Won (The Department of Pathology and Laboratory Medicine, The University of Pennsylvania School of Medicine) ;
  • Lorenzo, Joseph (The Department of Medicine and the Musculoskeletal Institute, University of Connecticut Health Center)
  • Published : 2008.07.31

Abstract

It has become clear that complex interactions underlie the relationship between the skeletal and immune systems. This is particularly true for the development of immune cells in the bone marrow as well as the functions of bone cells in skeletal homeostasis and pathologies. Because these two disciplines developed independently, investigators with an interest in either often do not fully appreciate the influence of the other system on the functions of the tissue that they are studying. With these issues in mind, this review will focus on several key areas that are mediated by crosstalk between the bone and immune systems. A more complete appreciation of the interactions between immune and bone cells should lead to better therapeutic strategies for diseases that affect either or both systems.

Keywords

References

  1. Walsh, M. C., Kim, N., Kadono, Y., Rho, J., Lee, S. Y., Lorenzo, J. and Choi, Y. (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24, 33-63. https://doi.org/10.1146/annurev.immunol.24.021605.090646
  2. Takayanagi, H. (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292-304. https://doi.org/10.1038/nri2062
  3. Arron, J. R. and Choi, Y. (2000) Bone versus immune system. Nature 408, 535-536. https://doi.org/10.1038/35046196
  4. Teitelbaum, S. L. (2000) Bone resorption by osteoclasts. Science 289, 1504-1508. https://doi.org/10.1126/science.289.5484.1504
  5. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M. T. and Martin, T. J.(1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345-357. https://doi.org/10.1210/er.20.3.345
  6. Arai, F., Miyamoto, T., Ohneda, O., Inada, T., Sudo, T., Brasel, K., Miyata, T., Anderson, D. M. and Suda, T. (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J. Exp. Med. 190, 1741-1754. https://doi.org/10.1084/jem.190.12.1741
  7. Jacquin, C., Gran, D. E., Lee, S. K., Lorenzo, J. A. and Aguila, H. L. (2006) Identification of multiple osteoclast precursor populations in murine bone marrow. J. Bone Min. Res. 21, 67-77. https://doi.org/10.1359/JBMR.051007
  8. Miyamoto, T., Ohneda, O., Arai, F., Iwamoto, K., Okada, S., Takagi, K., Anderson, D. M. and Suda, T. (2001) Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood 98, 2544-2554. https://doi.org/10.1182/blood.V98.8.2544
  9. Alnaeeli, M., Penninger, J. M. and Teng, Y. T. (2006) Immune Interactions with CD4+ T Cells Promote the Development of Functional Osteoclasts from Murine CD11c+ Dendritic Cells. J. Immunol. 177, 3314-3326. https://doi.org/10.4049/jimmunol.177.5.3314
  10. Speziani, C., Rivollier, A., Gallois, A., Coury, F., Mazzorana, M., Azocar, O., Flacher, M., Bella, C., Tebib, J., Jurdic, P., Rabourdin-Combe, C. and Delprat , C. (2007) Murine dendritic cell transdifferentiation into osteoclasts is differentially regulated by innate and adaptive cytokines. Eur. J. Immunol. 37, 747-757. https://doi.org/10.1002/eji.200636534
  11. Fogg, D. K., Sibon, C., Miled, C., Jung, S., Aucouturier, P., Littman, D. R., Cumano, A. and Geissmann, F. (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83-87. https://doi.org/10.1126/science.1117729
  12. Mochizuki, A., Takami, M., Kawawa, T., Suzumoto, R., Sasaki, T., Shiba, A., Tsukasaki, H., Zhao, B., Yasuhara, R., Suzawa, T., Miyamoto , Y., Choi, Y. and Kamijo, R. (2006) Identification and characterization of the precursors committed to osteoclasts induced by TNF related activation-induced cytokine/receptor activator of NF-kappa B ligand. J. Immunol. 177, 4360-4368. https://doi.org/10.4049/jimmunol.177.7.4360
  13. Li, P., Schwarz, E. M., O'Keefe, R. J., Ma, L., Looney, R. J., Ritchlin, C. T., Boyce, B. F. and Xing, L. (2004) Systemic tumor necrosis factor alpha mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor alpha-transgenic mice. Arthritis Rheum. 50, 265-276. https://doi.org/10.1002/art.11419
  14. Yao, Z., Li, P., Zhang, Q., Schwarz, E. M., Keng, P., Arbini, A., Boyce, B. F. and Xing, L. (2006) Tnf increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through upregulation of c-fms expression. J. Biol. Chem. 281, 11846-11855. https://doi.org/10.1074/jbc.M512624200
  15. Atkins, G. J., Kostakis, P., Vincent, C., Farrugia, A. N., Houchins, J. P., Findlay, D. M., Evdokiou, A. and Zannettino, A. C. (2006) RANK Expression as a cell surface marker of human osteoclast precursors in peripheral blood, bone marrow, and giant cell tumors of bone. J. Bone. Min. Res. 21, 1339-1349. https://doi.org/10.1359/jbmr.060604
  16. Komano, Y., Nanki, T., Hayashida, K., Taniguchi, K. and Miyasaka, N. (2006) Identification of a human peripheral blood monocyte subset that differentiates into osteoclasts. Arthritis Res.Ther. 8, R152. https://doi.org/10.1186/ar2046
  17. Sorensen, M. G., Henriksen, K., Schaller, S., Henriksen, D. B., Nielsen, F. C., Dziegiel, M. H. and Karsdal, M. A. (2007) Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J. Bone Min. Res. 25, 36-45.
  18. Kindle, L., Rothe, L., Kriss, M., Osdoby, P. and Collin- Osdoby, P. (2006) Human microvascular endothelial cell activation by IL-1 and TNF-alpha stimulates the adhesion and transendothelial migration of circulating human CD14+ monocytes that develop with RANKL into functional osteoclasts. J. Bone Min. Res. 21, 193-206. https://doi.org/10.1359/JBMR.051027
  19. Miyamoto, T., Arai, F., Ohneda, O., Takagi, K., Anderson, D. M. and Suda, T. (2000) An adherent condition is required for formation of multinuclear osteoclasts in the presence of macrophage colony-stimulating factor and receptor activator of nuclear factor kappa B ligand. Blood 96, 4335-4343.
  20. Mocsai, A., Humphrey, M. B., Van Ziffle, J. A., Hu, Y., Burghardt, A., Spusta, S. C., Majumdar, S., Lanier, L. L., Lowell, C. A. and Nakamura, M. C. (2004) The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc. Natl. Acad. Sci. U. S. A. 101, 6158-6163. https://doi.org/10.1073/pnas.0401602101
  21. Koga, T., Inui, M., Inoue, K., Kim, S., Suematsu, A., Kobayashi, E., Iwata, T., Ohnishi, H., Matozaki, T., Kodama, T., Taniguchi , T., Takayanagi, H. and Takai , T. (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758-763. https://doi.org/10.1038/nature02444
  22. Aubin, J. E. (2001) Regulation of osteoblast formation and function. Rev. Endocr. Metab. Disord. 2, 81-94. https://doi.org/10.1023/A:1010011209064
  23. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. and Karsenty, G. (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747-754. https://doi.org/10.1016/S0092-8674(00)80257-3
  24. Celeste, A. J., Iannazzi, J. A., Taylor, R. C., Hewick, R. M., Rosen, V., Wang, E. A. and Wozney, J. M. (1990) Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc. Natl. Acad. Sci. U. S. A. 87, 9843-9847. https://doi.org/10.1073/pnas.87.24.9843
  25. Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J. M., Behringer, R. R. and de Crombrugghe, B. (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17-29. https://doi.org/10.1016/S0092-8674(01)00622-5
  26. Bennett, C. N., Longo, K. A., Wright, W. S., Suva, L. J., Lane, T. F., Hankenson, K. D. and MacDougald, O. A. (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc. Natl. Acad. Sci. U. S. A. 102, 3324-3329. https://doi.org/10.1073/pnas.0408742102
  27. Gong, Y., Slee, R. B., Fukai, N., Rawadi, G., Roman-Roman, S., Reginato, A. M., Wang, H., Cundy, T., Glorieux, F. H., Lev, D., Zacharin, M., Oexle, K., Marcelino, J., Suwairi, W., Heeger, S., Sabatakos, G., Apte, S., Adkins, W. N., Allgrove, J., Arslan-Kirchner, M., Batch, J. A., Beighton, P., Black, G. C., Boles, R. G., Boon, L. M., Borrone, C., Brunner, H. G., Carle, G. F., Dallapiccola, B., De Paepe, A., Floege, B., Halfhide, M. L., Hall, B., Hennekam, R. C., Hirose, T., Jans, A., Jüppner, H., Kim, C. A., Keppler-Noreuil, K., Kohlschuetter, A., LaCombe, D., Lambert, M., Lemyre, E., Letteboer, T., Peltonen, L., Ramesar, R. S., Romanengo, M., Somer, H., Steichen-Gersdorf, E., Steinmann, B., Sullivan, B., Superti-Furga, A., Swoboda, W., van den Boogaard, M. J., Van Hul, W., Vikkula, M., Votruba, M., Zabel, B., Garcia, T., Baron, R., Olsen, B. R., Warman, M. L.; Osteoporosis- Pseudoglioma Syndrome Collaborative Group. (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513-523. https://doi.org/10.1016/S0092-8674(01)00571-2
  28. Kato, M., Patel, M. S., Levasseur, R., Lobov, I., Chang, B. H., Glass, D. A. 2nd, Hartmann, C., Li, L., Hwang, T. H., Brayton, C. F., Lang, R. A., Karsenty, G. and Chan, L. (2002) Cbfa1- independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell. Biol. 157, 303-314. https://doi.org/10.1083/jcb.200201089
  29. Wei, S., Kitaura, H., Zhou, P., Ross, F. P. and Teitelbaum, S. L. (2005) IL-1 mediates TNF-induced osteoclastogenesis. J. Clin. Invest. 115, 282-290. https://doi.org/10.1172/JCI200523394
  30. Kitaura, H., Zhou, P., Kim, H. J., Novack, D. V., Ross, F. P. and Teitelbaum, S. L. (2005) M-CSF mediates TNF-induced inflammatory osteolysis. J. Clin. Invest. 115, 3418- 3427. https://doi.org/10.1172/JCI26132
  31. Kobayashi, K., Takahashi, N., Jimi, E., Udagawa, N., Takami, M., Kotake, S., Nakagawa, N., Kinosaki, M., Yamaguchi, K., Shima, N., Yasuda, H., Morinaga, T., Higashio, K., Martin, T. J. and Suda, T. (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 191, 275-286. https://doi.org/10.1084/jem.191.2.275
  32. Li, J., Sarosi, I., Yan, X. Q., Morony, S., Capparelli, C., Tan, H. L., McCabe, S., Elliott, R., Scully, S., Van, G., Kaufman, S., Juan S. C., Sun, Y., Tarpley, J., Martin, L., Christensen, K., McCabe, J., Kostenuik, P., Hsu, H., Fletcher, F., Dunstan, C. R., Lacey, D. L. and Boyle, W. J. (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. U. S. A. 97, 1566-1571. https://doi.org/10.1073/pnas.97.4.1566
  33. Gilbert, L., He, X., Farmer, P., Boden, S., Kozlowski, M., Rubin, J. and Nanes, M. S. (2000) Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology 141, 3956. https://doi.org/10.1210/en.141.11.3956
  34. Centrella, M., McCarthy, T. L. and Canalis, E. (1988) Tumor necrosis factor-alpha inhibits collagen synthesis and alkaline phosphatase activity independently of its effect on deoxyribonucleic acid synthesis in osteoblast-enriched bone cell cultures. Endocrinology 123, 1442-1448. https://doi.org/10.1210/endo-123-3-1442
  35. Smith, D. D., Gowen, M., and Mundy, G. R. (1987) Effects of interferon-gamma and other cytokines on collagen synthesis in fetal rat bone cultures. Endocrinology 120, 2494-2499. https://doi.org/10.1210/endo-120-6-2494
  36. Jilka, R. L., Weinstein, R. S., Bellido, T., Parfitt, A. M. and Manolagas, S. C. (1998) Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J. Bone Miner. Res. 13, 793-802. https://doi.org/10.1359/jbmr.1998.13.5.793
  37. Kawakami, A., Eguchi, K., Matsuoka, N., Tsuboi, M., Koji, T., Urayama, S., Fujiyama, K., Kiriyama, T., Nakashima, T., Nakane, P.K. and Nagataki, S. (1997) Fas and Fas ligand interaction is necessary for human osteoblast apoptosis. J. Bone Miner. Res. 12, 1637-1647. https://doi.org/10.1359/jbmr.1997.12.10.1637
  38. Park, H., Jung, Y. K., Park, O. J., Lee, Y. J., Choi, J. Y. and Choi, Y. (2005) Interaction of fas ligand and fas expressed on osteoclast precursors increases osteoclastogenesis. J. Immunol. 175, 7193-7201. https://doi.org/10.4049/jimmunol.175.11.7193
  39. Wu, X., McKenna, M. A., Feng, X., Nagy, T. R. and McDonald, J. M. (2003) Osteoclast Apoptosis: The role of Fas in vivo and in vitro. Endocrinology 144, 5545-5555. https://doi.org/10.1210/en.2003-0296
  40. Wu, X., Pan, G., McKenna, M. A., Zayzafoon, M., Xiong, W. C. and McDonald, J. M. (2005) RANKL regulates Fas expression and Fas-mediated apoptosis in osteoclasts. J. Bone Min. Res. 20, 107-116. https://doi.org/10.1359/JBMR.041022
  41. Katavic, V., Lukic, I. K., Kovacic, N., Grcevic, D., Lorenzo, J. A. and Marusic, A. (2003) Increased Bone Mass Is a Part of the Generalized Lymphoproliferative Disorder phenotype in the mouse. J. Immunol. 170, 1540-1547. https://doi.org/10.4049/jimmunol.170.3.1540
  42. Nakamura, T., Imai, Y., Matsumoto, T., Sato, S., Takeuchi, K., Igarashi, K., Harada, Y., Azuma, Y., Krust, A., Yamamoto, Y., Nishina, H., Takeda, S., Takayanagi, H., Metzger, D., Kanno, J., Takaoka, K., Martin, T. J., Chambon, P. and Kato, S. (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130, 811-823. https://doi.org/10.1016/j.cell.2007.07.025
  43. Roux, S., Lambert-Comeau, P., Saint-Pierre, C., Lepine, M., Sawan, B. and Parent, J. L. (2005) Death receptors, Fas and TRAIL receptors, are involved in human osteoclast apoptosis. Biochem. Biophys. Res. Commun. 333, 42-50. https://doi.org/10.1016/j.bbrc.2005.05.092
  44. Zauli, G., Rimondi, E., Stea, S., Baruffaldi, F., Stebel, M., Zerbinati, C., Corallini, F. and Secchiero, P. (2008) TRAIL inhibits osteoclastic differentiation by counteracting RANKL-dependent p27(Kip1) accumulation in pre-osteoclast precursors. J. Cell Physiol. 214, 117-125. https://doi.org/10.1002/jcp.21165
  45. Tinhofer, I., Biedermann, R., Krismer, M., Crazzolara, R. and Greil, R. (2006) A role of TRAIL in killing osteoblasts by myeloma cells. FASEB J. 20, 759-761. https://doi.org/10.1096/fj.05-4329fje
  46. Lopez-Granados, E., Temmerman, S. T., Wu, L., Reynolds, J. C., Follmann, D., Liu, S., Nelson, D. L., Rauch, F. and Jain, A. (2007) Osteopenia in X-linked hyper-IgM syndrome reveals a regulatory role for CD40 ligand in osteoclastogenesis. Proc. Natl. Acad. Sci. U. S. A. 104, 5056-5061. https://doi.org/10.1073/pnas.0605715104
  47. Lee, H. Y., Jeon, H. S., Song, E. K., Han, M. K., Park, S. I., Lee, S. I., Yun, H. J., Kim, J. R., Kim, J. S., Lee, Y. C., Kim, S. I., Kim, H. R., Choi, J. Y., Kang, I., Kim, H. Y. and Yoo, W. H. (2006) CD40 ligation of rheumatoid synovial fibroblasts regulates RANKL-medicated osteoclastogenesis: evidence of NF-kappaB-dependent, CD40-mediated bone destruction in rheumatoid arthritis. Arthritis. Rheum. 54, 1747-1758. https://doi.org/10.1002/art.21873
  48. Rubin, J., Fan, X., Thornton, D., Bryant, R. and Biskobing, D. (1996) Regulation of murine osteoblast macrophage colony-stimulating factor production by 1, 25(OH)2D3. Calcif. Tissue Int. 59, 291-296. https://doi.org/10.1007/s002239900125
  49. Weir, E. C., Horowitz, M. C., Baron, R., Centrella, M., Kacinski, B. M. and Insogna, K. L. (1993) Macrophage colony- stimulating factor release and receptor expression in bone cells. J. Bone Miner. Res. 8, 1507-1518.
  50. Yao, G. Q., Sun, B. H., Hammond, E. E., Spencer, E. N., Horowitz, M. C., Insogna, K. L. and Weir, E. C. (1998) The cell-surface form of colony-stimulating factor-1 is regulated by osteotropic agents and supports formation of multinucleated osteoclast-like cells. J. Biol. Chem. 273, 4119-4128. https://doi.org/10.1074/jbc.273.7.4119
  51. Shinar, D. M., Sato, M. and Rodan, G. A. (1990) The effect of hemopoietic growth factors on the generation of osteoclast-like cells in mouse bone marrow cultures. Endocrinology 126, 1728-1735. https://doi.org/10.1210/endo-126-3-1728
  52. Fuller, K., Owens, J. M., Jagger, C. J., Wilson, A., Moss, R. and Chambers, T. J. (1993) Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J. Exp. Med. 178, 1733-1744 https://doi.org/10.1084/jem.178.5.1733
  53. Lagasse, E. and Weissman, I. L. (1997) Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 89, 1021-1031. https://doi.org/10.1016/S0092-8674(00)80290-1
  54. Lorenzo, J. A., Sousa, S. L., Fonseca, J. M., Hock, J. M. and Medlock, E. S. (1987) Colony-stimulating factors regulate the development of multinucleated osteoclasts from recently replicated cells in vitro. J. Clin. Invest. 80, 160-164. https://doi.org/10.1172/JCI113042
  55. Khapli, S. M., Mangashetti, L. S., Yogesha, S. D. and Wani, M. R. (2003) IL-3 Acts Directly on Osteoclast Precursors and Irreversibly Inhibits Receptor Activator of NF-kappaB Ligand-Induced Osteoclast Differentiation by Diverting the Cells to Macrophage Lineage. J. Immunol. 171, 142-151. https://doi.org/10.4049/jimmunol.171.1.142
  56. Udagawa, N., Horwood, N. J., Elliott, J., Mackay, A., Owens, J., Okamura, H., Kurimoto, M., Chambers, T. J., Martin, T. J. and Gillespie, M. T. (1997) Interleukin-18 (interferon-gamma-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-gamma to inhibit osteoclast formation. J. Exp. Med. 185, 1005-1012. https://doi.org/10.1084/jem.185.6.1005
  57. Takahashi, N., Udagawa, N., Akatsu, T., Tanaka, H., Shionome, M. and Suda, T. (1991) Role of colony-stimulating factors in osteoclast development. J. Bone Miner. Res. 6, 97785.
  58. Yogesha, S. D., Khapli, S. M. and Wani, M. R. (2005) Interleukin-3 and granulocyte-macrophage colony-stimulating factor inhibits tumor necrosis factor (TNF)-alpha-induced osteoclast differentiation by down-regulation of expression of TNF receptors 1 and 2. J. Biol. Chem. 280, 11759-11769. https://doi.org/10.1074/jbc.M410828200
  59. Ehrlich, L. A., Chung, H. Y., Ghobrial, I., Choi, S. J., Morandi, F., Colla, S., Rizzoli, V., Roodman, G. D. and Giuliani, N. (2005) IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood 106, 1407-1414. https://doi.org/10.1182/blood-2005-03-1080
  60. Soshi, S., Takahashi, H. E., Tanizawa, T., Endo, N., Fujimoto, R. and Murota, K. (1996) Effect of recombinant human granulocyte colony-stimulating factor (rh G-CSF) on rat bone: inhibition of bone formation at the endosteal surface of vertebra and tibia. Calcif. Tissue Int. 58, 337-340. https://doi.org/10.1007/BF02509382
  61. Takamatsu, Y., Simmons, P. J., Moore, R. J., Morris, H. A., To, L. B. and Levesque, J. P. (1998) Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood 92, 3465-3473.
  62. Lapidot, T. and Petit, I. (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp. Hematol. 30, 973-981. https://doi.org/10.1016/S0301-472X(02)00883-4
  63. Purton, L. E., Lee, M. Y. and Torok-Storb, B. (1996) Normal human peripheral blood mononuclear cells mobilized with granulocyte colony-stimulating factor have increased osteoclastogenic potential compared to nonmobilized blood. Blood 87, 1802-1808.
  64. Kuwabara, H., Wada, T., Oda, T., Yoshikawa, H., Sawada, N., Kokai, Y. and Ishii, S. (2001) Overexpression of the granulocyte colony-stimulating factor gene impairs bone morphogenetic protein responsiveness in mice. Lab Invest. 81, 1133-1141. https://doi.org/10.1038/labinvest.3780325
  65. Oda, T., Wada, T., Kuwabara, H., Sawada, N., Yamashita, T. and Kokai, Y. (2005) Ovariectomy fails to augment bone resorption and marrow B lymphopoiesis in granulocyte colony-stimulating factor transgenic mice. J. Orthop. Sci. 10, 70-76. https://doi.org/10.1007/s00776-004-0851-y
  66. Lee, S. K., Gardner, A. E., Kalinowski, J. F., Jastrzebski, S. L. and Lorenzo, J. A. (2005) RANKL-stimulated osteoclastlike cell formation in vitro is partially dependent on endogenous interleukin-1 production. Bone 38, 678-685. https://doi.org/10.1016/j.bone.2005.10.011
  67. Lee, S. K., Kalinowski, J., Jastrzebski, S. and Lorenzo, J. A. (2002) 1, 25 (OH)(2) vitamin D(3)-stimulated osteoclast formation in spleen-osteoblast cocultures is mediated in part by enhanced IL-1alpha and receptor activator of NF-kappa B ligand production in osteoblasts. J. Immunol. 169, 2374-2380. https://doi.org/10.4049/jimmunol.169.5.2374
  68. Lorenzo, J. A., Sousa, S., Alander, C., Raisz, L. G. and Dinarello, C. A. (1987) Comparison of the bone-resorbing activity in the supernatants from phytohemagglutininstimulated human peripheral blood mononuclear cells with that of cytokines through the use of an antiserum to interleukin 1. Endocrinology 121, 1164-1170. https://doi.org/10.1210/endo-121-3-1164
  69. Sato, K., Fujii, Y., Asano, S., Ohtsuki, T., Kawakami, M., Kasono, K., Tsushima, T. and Shizume, K. (1986) Recombinant human interleukin 1 alpha and beta stimulate mouse osteoblast-like cells (MC3T3-E1) to produce macrophage- colony stimulating activity and prostaglandin E2. Biochem. Biophy. Res. Comm. 141, 285-291. https://doi.org/10.1016/S0006-291X(86)80366-7
  70. Klein, D. C. and Raisz, L. G. (1970) Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology 86, 1436-1440. https://doi.org/10.1210/endo-86-6-1436
  71. Ma, T., Miyanishi, K., Suen, A., Epstein, N. J., Tomita, T., Smith, R.L. and Goodman, S. B. (2004) Human interleukin- 1-induced murine osteoclastogenesis is dependent on RANKL, but independent of TNF-alpha. Cytokine 26, 138-144. https://doi.org/10.1016/j.cyto.2004.02.001
  72. Sato, N., Takahashi, N., Suda, K., Nakamura, M., Yamaki, M., Ninomiya, T., Kobayashi, Y., Takada, H., Shibata, K., Yamamoto, M., Takeda, K., Akira, S., Noguchi, T. and Udagawa, N. (2004) MyD88 but not TRIF is essential for osteoclastogenesis induced by lipopolysaccharide, diacyl lipopeptide, and IL-1alpha. J. Exp. Med. 200, 601-611. https://doi.org/10.1084/jem.20040689
  73. Lee, Z. H., Lee, S. E., Kim, C. W., Lee, S. H., Kim, S. W., Kwack, K., Walsh, K. and Kim, H. H. (2002) IL-1alpha stimulation of osteoclast survival through the PI 3-kinase/ Akt and ERK pathways. J. Biochem. 131, 161-166. https://doi.org/10.1093/oxfordjournals.jbchem.a003071
  74. Bajayo, A., Goshen, I., Feldman, S., Csernus, V., Iverfeldt, K., Shohami, E., Yirmiya, R. and Bab, I. (2005) Central IL-1 receptor signaling regulates bone growth and mass. Proc. Natl. Acad. Sci. U. S. A. 102, 12956-12961. https://doi.org/10.1073/pnas.0502562102
  75. Vargas, S. J., Naprta, A., Glaccum, M., Lee, S. K., Kalinowski, J. and Lorenzo, J. A. (1996) Interleukin-6 expression and histomorphometry of bones from mice deficient for receptors for interleukin-1 or tumor necrosis factor. J. Bone Min. Res. 11, 1736-1740. https://doi.org/10.1002/jbmr.5650111117
  76. Lowik, C. W., Van der, P. G., Bloys, H., Hoekman, K., Bijvoet, O. L., Aarden, L. A. and Papapoulos, S. E. (1989) Parathyroid hormone (PTH) and PTH-like protein (PLP) stimulate interleukin-6 production by osteogenic cells: a possible role of interleukin-6 in osteoclastogeneis. Biochem. Biophys. Res. Commun. 162, 1546-1552. https://doi.org/10.1016/0006-291X(89)90851-6
  77. Girasole, G., Jilka, R. L., Passeri, G., Boswell, S., Boder, G., Williams, D. C. and Manolagas, S. C. (1992) 17a-Estradiol inhibits interleukin-6 production by bone marrow- derived stromal cells and osteoblasts in vitro: A potential mechanism for the antiosteoporotic effect of estrogens. J. Clin. Invest. 89, 883-891. https://doi.org/10.1172/JCI115668
  78. Al-Humidan, A., Ralston, S. H., Hughes, D. E., Chapman, K., Aarden, L., Russell, R. G. G. and Gowen, M. (1991) Interleukin-6 does not stimulate bone resorption in neonatal mouse calvariae. J. Bone Min. Res. 6, 3-7. https://doi.org/10.1002/jbmr.5650060103
  79. Ishimi, Y., Miyaura, C., Jin, C. H., Akatsu, T., Abe, E., Nakamura, Y., Yamaguchi, A., Yoshiki, S., Matsuda, T., Hirano, T., Kishimoto, T. and Suda, T. (1990) IL-6 is produced by osteoblasts and induces bone resorption. J. Immunol. 145, 3297-3303.
  80. Manolagas, S. C. and Jilka, R. L. (1995) Mechanisms of disease: Bone marrow, cytokines, and bone remodeling- Emerging insights into the pathophysiology of osteoporosis. N. Eng. J. Med. 332, 305-311. https://doi.org/10.1056/NEJM199502023320506
  81. Liu, X. H., Kirschenbaum, A., Yao, S. and Levine, A. C. (2005) Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/ receptor activator of nuclear factor-{kappa}B (RANK) ligand/ RANK system. Endocrinology 146, 1991-1998. https://doi.org/10.1210/en.2004-1167
  82. Palmqvist, P., Persson, E., Conaway, H. H. and Lerner, U. H. (2002) IL-6, Leukemia Inhibitory Factor, and Oncostatin M Stimulate Bone Resorption and Regulate the Expression of Receptor Activator of NF-kappaB Ligand, Osteoprotegerin, and Receptor Activator of NF-kappaB in Mouse Calvariae. J. Immunol. 169, 3353-3362. https://doi.org/10.4049/jimmunol.169.6.3353
  83. Whyte, M. P. and Mumm, S. (2004) Heritable disorders of the RANKL/OPG/RANK signaling pathway. J. Musculoskelet. Neuronal. Interact. 4, 254-267.
  84. Guise, T. A. and Mundy, G. R. (1998) Cancer and bone. Endcr. Rev. 19, 18-54. https://doi.org/10.1210/er.19.1.18
  85. Yamamoto, T., Ozono, K., Kasayama, S., Yoh, K., Hiroshima, K., Takagi, M., Matsumoto, S., Michigami, T., Yamaoka, K., Kishimoto, T. and Okada, S. (1996) Increased IL-6-production by cells isolated from the fibrous bone dysplasia tissues in patients with McCune-Albright syndrome. J. Clin. Invest. 98, 30-35. https://doi.org/10.1172/JCI118773
  86. Reddy, S. V., Takahashi, S., Dallas, M., Williams, R. E., Neckers, L. and Roodman, G. D. (1994) Interleukin-6 antisense deoxyoligonucleotides inhibit bone resorption by giant cells from human giant cell tumors of bone. J. Bone Miner. Res. 9, 753-757.
  87. Devlin, R. D., Bone, H. G., III and Roodman, G. D. (1996) Interleukin-6: A potential mediator of the massive osteolysis in patientswith Gorham-Stout disease. J. Clin. Endocrinol. Metab. 81, 1893-1897. https://doi.org/10.1210/jc.81.5.1893
  88. Grey, A., Mitnick, M. A., Masiukiewicz, U., Sun, B. H., Rudikoff, S., Jilka, R. L., Manolagas, S. C. and Insogna, K. (1999) A role for interleukin-6 in parathyroid hormone-induced bone resorption in vivo. Endocrinology 140, 4683- 4690. https://doi.org/10.1210/en.140.10.4683
  89. O'Brien, C. A., Jilka, R.L., Fu, Q., Stewart, S., Weinstein, R. S. and Manolagas, S. C. (2005) IL-6 is not required for parathyroid hormone stimulation of RANKL expression, osteoclast formation, and bone loss in mice. Am. J. Physiol. Endocrinol. Metab. 289, E784-793. https://doi.org/10.1152/ajpendo.00029.2005
  90. Elias, J. A., Tang, W. and Horowitz, M. C. (1995) Cytokine and hormonal stimulation of human osteosarcoma interleukin- 11 production. Endocrinology 136, 489-498. https://doi.org/10.1210/en.136.2.489
  91. Girasole, G., Passeri, G., Jilka, R. L. and Manolagas, S. C. (1994) Interleukin-11: A new cytokine critical for osteoclast development. J. Clin. Invest. 93, 1516-1524. https://doi.org/10.1172/JCI117130
  92. Hill, P. A., Tumber, A., Papaioannou, S. and Meikle, M. C. (1998) The cellular actions of interleukin-11 on bone resorption in vitro. Endocrinology 139, 1564-1572. https://doi.org/10.1210/en.139.4.1564
  93. Morinaga, Y., Fujita, N., Ohishi, K., Zhang, Y. and Tsuruo, T. (1998) Suppression of interleukin-11-mediated bone resorption by cyclooxygenases inhibitors. J. Cell Physiol. 175, 247-254. https://doi.org/10.1002/(SICI)1097-4652(199806)175:3<247::AID-JCP2>3.0.CO;2-O
  94. Sims, N. A., Jenkins, B. J., Nakamura, A., Quinn, J. M., Li, R., Gillespie, M. T., Ernst, M., Robb, L. and Martin, T. J. (2005) Interleukin-11 receptor signaling is required for normal bone remodeling. J. Bone Min. Res. 20, 1093-1102. https://doi.org/10.1359/JBMR.050209
  95. Greenfield, E. M., Horowitz, M. C. and Lavish, S. A. (1996) Stimulation by parathyroid hormone of interleukin-6 and leukemia inhibitory factor expression in osteoblasts is an immediate-early gene response induced by cAMP signal transduction. J. Biol. Chem. 271, 10984-10989. https://doi.org/10.1074/jbc.271.18.10984
  96. Reid, I. R., Lowe, C., Cornish, J., Skinner, S. J., Hilton, D. J., Willson, T. A., Gearing, D. P. and Martin, T. J. (1990) Leukemia inhibitory factor: a novel bone-active cytokine. Endocinology 126, 1416-1420. https://doi.org/10.1210/endo-126-3-1416
  97. Lorenzo, J. A., Sousa, S. L. and Leahy, C. L. (1990) Leukemia inhibitory factor (LIF) inhibits basal bone resorption in fetal rat long bone cultures. Cytokine. 2, 266-271. https://doi.org/10.1016/1043-4666(90)90027-Q
  98. Van Beek, E., Van der Wee-Pals, L., van de Ruit, M., Nijweide, P., Papapoulos, S. and Lowik, C. (1993) Leukemia inhibitory factor inhibits osteoclastic resorption, growth, mineralization, and alkaline phosphatase activity in fetal mouse metacarpal bones in culture. J. Bone Min. Res. 8, 191-198. https://doi.org/10.1002/jbmr.5650080210
  99. Cornish, J., Callon, K., King, A., Edgar, S. and Reid, I. R. (1993) The effect of leukemia inhibitory factor on bone in vivo. Endocrinology 132, 1359-1366. https://doi.org/10.1210/en.132.3.1359
  100. Ware, C. B., Horowitz, M. C., Renshaw, B. R., Hunt, J. S., Liggitt, D., Koblar, S. A., Gliniak, B. C., McKenna, H. J., Papayannopoulou, T., Thoma, B., Cheng, L., Donovan, P. J., Peschon, J. J., Bartlett, P. F., Willis, C. R., Wright, B. D., Carpenter, M. K., Davison, B. L., and Gearing, D. P. (1995) Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121, 1283-1299.
  101. Heymann, D., Guicheux, J., Gouin, F., Cottrel, M. and Daculsi, G. (1998) Oncostatin M stimulates macrophagepolykaryon formation in long-term human bone-marrow cultures. Cytokine. 10, 98-109. https://doi.org/10.1006/cyto.1997.0258
  102. Jay, P. R., Centrella, M., Lorenzo, J., Bruce, A. G. and Horowitz, M. C. (1996) Oncostatin-M: A new bone active cytokine that activates osteoblasts and inhibits bone resorption. Endocrinology 137, 1151-1158. https://doi.org/10.1210/en.137.4.1151
  103. Malik, N., Haugen, H. S., Modrell, B., Shoyab, M. and Clegg, C. H. (1995) Developmental abnormalities in mice transgenic for bovine oncostatin M. Mol. Cell. Biol. 15, 2349-2358. https://doi.org/10.1128/MCB.15.5.2349
  104. Kawasaki, K., Gao, Y. H., Yokose, S., Kaji, Y., Nakamura, T., Suda, T., Yoshida, K., Taga, T., Kishimoto, T., Kataoka, H., Yuasa, T., Norimatsu, H. and Yamaguchi, A. (1997) Osteoclasts are present in gp130-deficient mice. Endocrinology 138, 4959-4965. https://doi.org/10.1210/en.138.11.4959
  105. Weitzmann, M. N., Roggia, C., Toraldo, G., Weitzmann, L. and Pacifici, R. (2002) Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J. Clin. Invest. 110, 1643-1650. https://doi.org/10.1172/JCI0215687
  106. Weitzmann, M. N., Cenci, S., Rifas, L., Brown, C. and Pacifici, R. (2000) Interleukin-7 stimulates osteoclast formation by up-regulating the T- cell production of soluble osteoclastogenic cytokines. Blood 96, 1873-1878.
  107. Toraldo, G., Roggia, C., Qian, W. P., Pacifici, R. and Weitzmann, M. N. (2003) IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor kappa B ligand and tumor necrosis factor alpha from T cells. Proc. Natl. Acad. Sci. U. S. A. 100, 125-130. https://doi.org/10.1073/pnas.0136772100
  108. Ryan, M. R., Shepherd, R., Leavey, J. K., Gao, Y. H., Grassi, F., Schnell, F. J., Qian, W. P., Kersh, G. J., Weitzmann, M. N. and Pacifici, R. (2005) An IL-7-dependent rebound in thymic T cell output contributes to the bone loss induced by estrogen deficiency. Proc. Natl. Acad. Sci. U. S. A. 102, 16735-16740. https://doi.org/10.1073/pnas.0505168102
  109. Lee, S. K., Kalinowski, J. F., Jastrzebski, S. L., Puddington, L. and Lorenzo, J. A. (2003) Interleukin-7 is a direct inhibitor of in vitro osteoclastogenesis. Endocrinology 144, 524-3531.
  110. Lee, S. K., Kalinowski, J. F., Jacquin, C., Adams, D. J., Gronowicz, G. and Lorenzo, J. A. (2006) Interleukin-7 influences osteoclast function in vivo but is not a critical factor in ovariectomy-induced bone loss. J. Bone Miner. Res. 21, 695-702. https://doi.org/10.1359/jbmr.060117
  111. Sato, T., Watanabe, K., Masuhara, M., Hada, N. and Hakeda, Y. (2007) Production of IL-7 is increased in ovariectomized mice, but not RANKL mRNA expression by osteoblasts/stromal cells in bone, and IL-7 enhances generation of osteoclast precursors in vitro. J. Bone Miner. Res. 25, 19-27.
  112. Lee, S., Kalinowski, J. F., Adams, D. J., Aguila, H. L. and Lorenzo, J. A. (2004) Osteoblast specific overexpression of human interleukin-7 increases femoral trabecular bone mass in female mice and inhibits in vitro osteoclastogenesis. J. Bone Miner. Res. 19, S410.
  113. Lee, S., Kalinowski J, Adams D. J, Aguila H. L. and Lorenzo, J. A. (2005) Osteoblast specific overexpression of human interlukin-7 rescues the bone phenotype of interleukin- 7 deficient female mice. J. Bone Miner. Res. 20, S48.
  114. Campbell, J. J. and Butcher, E. C. (2000) Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 121, 336-341.
  115. Bendre, M. S., Margulies, A. G., Walser, B., Akel, N. S., Bhattacharrya, S., Skinner, R. A., Swain, F., Ramani, V., Mohammad, K. S., Wessner, L. L., Martinez, A., Guise, T. A., Chirgwin, J. M., Gaddy, D. and Suva, L. J. (2005) Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factorkappaB ligand pathway. Cancer Res. 65, 11001-11009. https://doi.org/10.1158/0008-5472.CAN-05-2630
  116. Bendre, M. S., Montague, D. C., Peery, T., Akel, N. S., Gaddy, D. and Suva, L. J. (2003) Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone 33, 28-37. https://doi.org/10.1016/S8756-3282(03)00086-3
  117. Sunyer, T., Rothe, L., Jiang, X. S., Osdoby, P. and Collin-Osdoby, P. (1996) Proinflammatory agents, IL-8 and IL-10, upregulate inducible nitric oxide synthase expression and nitric oxide production in avian osteoclast- like cells. J. Cell Biochem. 60, 469-483. https://doi.org/10.1002/(SICI)1097-4644(19960315)60:4<469::AID-JCB4>3.0.CO;2-Q
  118. Choi, J., Oba, Y., Jelinek, D., Ehrlich, L., Lee, W. and Roodman, D. (2003) Blocking CCR1 or CCR5 inhibits both osteoclast formation and increased alpha1-integrin expression induced by MIP-1alpha. Eur. J. Haematol. 70, 272-278. https://doi.org/10.1034/j.1600-0609.2003.11920.x
  119. Kukita, T., Nomiyama, H., Ohmoto, Y., Kukita, A., Shuto, T., Hotokebuchi, T., Sugioka, Y., Miura, R. and Iijima, T. (1997) Macrophage inflammatory protein-1 alpha (LD78) expressed in human bone marrow: its role in regulation of hematopoiesis and osteoclast recruitment. Lab. Invest. 76, 399-406.
  120. Watanabe, T., Kukita, T., Kukita, A., Wada, N., Toh, K., Nagata, K., Nomiyama, H. and Iijima, T. (2004) Direct stimulation of osteoclastogenesis by MIP-1alpha: evidence obtained from studies using RAW264 cell clone highly responsive to RANKL. J. Endocrinol. 180, 193-201. https://doi.org/10.1677/joe.0.1800193
  121. Abe, M., Hiura, K., Wilde, J., Moriyama, K., Hashimoto, T., Ozaki, S., Wakatsuki, S., Kosaka, M., Kido, S., Inoue, D. and Matsumoto, T. (2002) Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood 100, 2195-2202.
  122. Choi, S. J., Oba, Y., Gazitt, Y., Alsina, M., Cruz, J., Anderson, J. and Roodman, G. D. (2001) Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. J. Clin. Invest. 108, 1833-1841. https://doi.org/10.1172/JCI200113116
  123. Fuller, K., Owens, J. M. and Chambers, T. J. (1995) Macrophage inflammatory protein-1a and IL-8 stimulate the motility but suppress the resorption of isolated rat osteoclasts. J. Immunol. 154, 6065-6072.
  124. Okamatsu, Y., Kim, D., Battaglino, R., Sasaki, H., Spate, U. and Stashenko, P. (2004) MIP-1{gamma} Promotes Receptor Activator of NF-{kappa}B Ligand-Induced Osteoclast Formation and Survival. J. Immunol. 173, 2084-2090. https://doi.org/10.4049/jimmunol.173.3.2084
  125. Yu, X., Huang, Y., Collin-Osdoby, P. and Osdoby, P. (2004) CCR1 chemokines promote the chemotactic recruitment, RANKL development, and motility of osteoclasts and are induced by inflammatory cytokines in osteoblasts. J. Bone Min. Res. 19, 2065-2077. https://doi.org/10.1359/JBMR.040910
  126. Lean, J. M., Murphy, C., Fuller, K. and Chambers, T. J. (2002) CCL9/MIP-1gamma and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J. Cell. Biochem. 87, 386-393. https://doi.org/10.1002/jcb.10319
  127. Yang, M., Mailhot, G., MacKay, C. A., Mason-Savas, A., Aubin, J. and Odgren, P. R. (2006) Chemokine and chemokine receptor expression during colony stimulating factor-1-induced osteoclast differentiation in the toothless osteopetrotic rat: a key role for CCL9 (MIP-1gamma) in osteoclastogenesis in vivo and in vitro. Blood 107, 2262-2270. https://doi.org/10.1182/blood-2005-08-3365
  128. Ishida, N., Hayashi, K., Hattori, A., Yogo, K., Kimura, T. and Takeya, T. (2006) CCR1 Acts Downstream of NFAT2 in Osteoclastogenesis and Enhances Cell Migration. J. Bone Min. Res. 21, 48-57. https://doi.org/10.1359/JBMR.051001
  129. Wright, L. M., Maloney, W., Yu, X., Kindle, L., Collin- Osdoby, P. and Osdoby, P. (2005) Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone 36, 840-853. https://doi.org/10.1016/j.bone.2005.01.021
  130. Grassi, F., Piacentini, A., Cristino, S., Toneguzzi, S., Cavallo, C., Facchini, A. and Lisignoli, G. (2003) Human osteoclasts express different CXC chemokines depending on cell culture substrate: molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12. Histochem. Cell. Biol. 120, 391-400.
  131. Liao, T. S., Yurgelun, M. B., Chang, S. S., Zhang, H. Z., Murakami, K., Blaine, T. A., Parisien, M. V., Kim, W., Winchester, R. J. and Lee, F. Y. (2005) Recruitment of osteoclast precursors by stromal cell derived factor-1 (SDF-1) in giant cell tumor of bone. J. Orthop. Res. 23, 203-209. https://doi.org/10.1016/j.orthres.2004.06.018
  132. Zannettino, A. C., Farrugia, A. N., Kortesidis, A., Manavis, J., To, L. B., Martin, S. K., Diamond, P., Tamamura, H., Lapidot, T., Fujii, N. and Gronthos, S. (2005) Elevated serum levels of stromal-derived factor- 1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res. 65, 1700-1709. https://doi.org/10.1158/0008-5472.CAN-04-1687
  133. Rahimi, P., Wang, C., Stashenko, P., Lee, S. K., Lorenzo, J. A. and Graves, D. T. (1995) Monocyte chemoattractant protein-1 Expression and monocyte recruitment in osseous inflammation in the mouse. Endocrinology 136, 2752-2759. https://doi.org/10.1210/en.136.6.2752
  134. Zhu, J. F., Valente, A. J., Lorenzo, J. A., Carnes, D. and Graves, D. T. (1994) Expression of monocyte chemoattractant protein 1 in human osteoblastic cells stimulated by proinflammatory mediators. J. Bone Min. Res. 9, 1123-1130. https://doi.org/10.1002/jbmr.5650090721
  135. Wise, G. E., Huang, H. and Que, B. G. (1999) Gene expression of potential tooth eruption molecules in the dental follicle of the mouse. Eur. J. Oral. Sci. 107, 482-486. https://doi.org/10.1046/j.0909-8836.1999.eos107610.x
  136. Graves, D. T., Alsulaimani, F., Ding, Y. and Marks, S. C., Jr. (2002) Developmentally regulated monocyte recruitment and bone resorption are modulated by functional deletion of the monocytic chemoattractant protein-1 gene. Bone 31, 282-287. https://doi.org/10.1016/S8756-3282(02)00829-3
  137. Kim, M. S., Day, C. J. and Morrison, N. A. (2005) MCP-1 is induced by RANKL, promotes osteoclast fusion and rescues GM-CSF suppression of osteoclast formation. J. Biol. Chem. 280, 16163-16169. https://doi.org/10.1074/jbc.M412713200
  138. Li, X., Qin, L., Bergenstock, M., Bevelock, L.M., Novack, D.V., and Partridge, N.C. (2007) Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J. Biol. Chem. 282, 33098-33106. https://doi.org/10.1074/jbc.M611781200
  139. Owens, J. M., Gallagher, A. C. and Chambers, T. J. (1996) IL-1O modulates formation of osteoclasts in murine hemopoietic cultures. J. Immunol. 157, 936-940.
  140. Hong, M. H., Williams, H., Jin, C. H. and Pike, J. W. (2000) The inhibitory effect of interleukin-10 on mouseosteoclast formation involves novel tyrosine-phosphorylated proteins. J. Bone Min. Res. 15, 911-918. https://doi.org/10.1359/jbmr.2000.15.5.911
  141. Van Vlasselaer, P., Borremans, B., Van Der Heuvel, R., Van Gorp, U. and De Waal Malefyt, R. (1993) Interleukin- 10 inhibits the osteogenic activity of mouse bone marrow. Blood 82, 2361-2370.
  142. Evans, K. E. and Fox, S. W. (2007) Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus. BMC Cell. Biol. 19, 4.
  143. Mohamed, S. G., Sugiyama, E., Shinoda, K., Taki, H., Hounoki, H., bdel-Aziz, H. O., Maruyama, M., Kobayashi, M., Ogawa, H. and Miyahara, T. (2007) Interleukin-10 inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells. Bone. 41, 592-602. https://doi.org/10.1016/j.bone.2007.05.016
  144. Carmody, E. E., Schwarz, E. M., Puzas, J. E., Rosier, R. N. and O'Keefe, R. J. (2002) Viral interleukin-10 gene inhibition of inflammation, osteoclastogenesis, and bone resorption in response to titanium particles. Arthritis. Rheum. 46, 1298-1308. https://doi.org/10.1002/art.10227
  145. Liu, D., Yao, S. and Wise, G. E. (2006) Effect of interleukin- 10 on gene expression of osteoclastogenic regulatory molecules in the rat dental follicle. Eur. J. Oral. Sci. 114, 42-49. https://doi.org/10.1111/j.1600-0722.2006.00283.x
  146. Shin, H. H., Lee, J. E., Lee, E. A., Kwon, B. S. and Choi, H. S. (2006) Enhanced Osteoclastogenesis in 4-1BB-Deficient Mice Caused by Reduced Interleukin-10. J. Bone Min. Res. 21, 1907-1912. https://doi.org/10.1359/jbmr.060813
  147. Amcheslavsky, A. and Bar-Shavit, Z. (2006) Interleukin (IL)-12 mediates the anti-osteoclastogenic activity of CpGoligodeoxynucleotides. J. Cell. Physiol. 207, 244-250. https://doi.org/10.1002/jcp.20563
  148. Horwood, N. J., Elliott, J., Martin, T. J. and Gillespie, M. T. (2001) IL-12 Alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J. Immunol. 166, 4915-4921. https://doi.org/10.4049/jimmunol.166.8.4915
  149. Nagata, N., Kitaura, H., Yoshida, N. and Nakayama, K. (2003) Inhibition of RANKL-induced osteoclast formation in mouse bone marrow cells by IL-12: involvement of IFNgamma possibly induced from non-T cell population. Bone 33, 721-732. https://doi.org/10.1016/S8756-3282(03)00213-8
  150. Ogata, Y., Kukita, A., Kukita, T., Komine, M., Miyahara, A., Miyazaki, S. and Kohashi, O. (1999) A Novel Role of IL-15 in the Development of Osteoclasts: Inability to replace its activity with IL-2. J. Immunol. 162, 2754-2760.
  151. Miranda-Carus, M. E., ito-Miguel, M., Balsa, A., Cobo- Ibanez, T., Perez De, A. C., Pascual-Salcedo, D. and Martin-Mola, E. (2006) Peripheral blood T lymphocytes from patients with early rheumatoid arthritis express RANKL and interleukin-15 on the cell surface and promote osteoclastogenesis in autologous monocytes. Arthritis. Rheum. 54, 1151-1164. https://doi.org/10.1002/art.21731
  152. Weaver, C. T., Hatton, R. D., Mangan, P. R. and Harrington, L. E. (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821-852. https://doi.org/10.1146/annurev.immunol.25.022106.141557
  153. Sato, K., Suematsu, A., Okamoto, K., Yamaguchi, A., Morishita, Y., Kadono, Y., Tanaka, S., Kodama, T., Akira, S., Iwakura, Y. and Cua, D. J., Takayanagi, H. (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673-2682. https://doi.org/10.1084/jem.20061775
  154. Kotake, S., Udagawa, N., Takahashi, N., Matsuzaki, K., Itoh, K., Ishiyama, S., Saito, S., Inoue, K., Kamatani, N., Gillespie, M.T., Martin, T. J. and Suda, T. (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103, 1345-1352. https://doi.org/10.1172/JCI5703
  155. Van bezooijen, R. L., Farih-Sips, H. C., Papapoulos, S. E. and Lowik, C. W. (1999) Interleukin-17: A new bone acting cytokine in vitro. J. Bone Min. Res. 14, 1513-1521. https://doi.org/10.1359/jbmr.1999.14.9.1513
  156. Koenders, M. I., Lubberts, E., Oppers-Walgreen, B., Van Den, B. L., Helsen, M. M., Di Padova, F. E., Boots, A. M., Gram, H., Joosten, L. A. and Van den Berg, W. B. (2005) Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am. J. Pathol. 167, 141-149. https://doi.org/10.1016/S0002-9440(10)62961-6
  157. Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L. and Kuchroo, V. K. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235-238. https://doi.org/10.1038/nature04753
  158. Yamamura, M., Kawashima, M., Taniai, M., Yamauchi, H., Tanimoto, T., Kurimoto, M., Morita, Y., Ohmoto, Y. and Makino, H. (2001) Interferon-gamma-inducing activity of interleukin-18 in the joint with rheumatoid arthritis. Arthritis. Rheum. 44, 275-285. https://doi.org/10.1002/1529-0131(200102)44:2<275::AID-ANR44>3.0.CO;2-B
  159. Horwood, N. J., Udagawa, N., Elliott, J., Grail, D., Okamura, H., Kurimoto, M., Dunn, A. R., Martin, T. and Gillespie, M. T. (1998) Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor. J. Clin. Invest. 101, 595-603. https://doi.org/10.1172/JCI1333
  160. Cornish, J., Gillespie, M. T., Callon, K. E., Horwood, N. J., Moseley, J. M. and Reid, I. R. (2003) Interleukin-18 is a novel mitogen of osteogenic and chondrogenic cells. Endocrinology 144, 1194-1201. https://doi.org/10.1210/en.2002-220936
  161. Kawase, Y., Hoshino, T., Yokota, K., Kuzuhara, A., Nakamura, M., Maeda, Y., Nishiwaki, E., Zenmyo, M., Hiraoka, K., Aizawa, H. and Yoshino, K. (2003) Bone malformations in interleukin-18 transgenic mice. J. Bone Min. Res. 18, 975-983. https://doi.org/10.1359/jbmr.2003.18.6.975
  162. Yamada, N., Niwa, S., Tsujimura, T., Iwasaki, T., Sugihara, A., Futani, H., Hayashi, S., Okamura, H., Akedo, H. and Terada, N. (2002) Interleukin-18 and interleukin- 12 synergistically inhibit osteoclastic bone-resorbing activity. Bone 30, 901-908. https://doi.org/10.1016/S8756-3282(02)00722-6
  163. Makiishi-Shimobayashi, C., Tsujimura, T., Iwasaki, T., Yamada, N., Sugihara, A., Okamura, H., Hayashi, S. S. and Terada, N. (2001) Interleukin-18 Up-Regulates Osteoprotegerin Expression in Stromal/Osteoblastic Cells. Biochem. Biophy. Res. Comm. 281, 361-366. https://doi.org/10.1006/bbrc.2001.4380
  164. Dai, S. M., Nishioka, K. and Yudoh, K. (2004) Interleukin (IL) 18 stimulates osteoclast formation through synovial T cells in rheumatoid arthritis: comparison with IL1 beta and tumour necrosis factor alpha. Ann. Rheum. Dis. 63, 1379-1386. https://doi.org/10.1136/ard.2003.018481
  165. Gowen, M., and Mundy, G. R. (1986) Actions of recombinant interleukin 1, interleukin 2, and interferongamma on bone resorption in vitro. J. Immunol. 136, 2478-2482.
  166. Takahashi, N., Mundy, G. R. and Roodman, G. D. (1986) Recombinant human interferon-gamma inhibits formation of human osteoclast-like cells. J. Immunol. 137, 3544-3549.
  167. Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., Takaoka, A., Yokochi, T., Oda, H., Tanaka, K., Nakamura, K. and Taniguchi, T. (2000) T-cell- mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600-605. https://doi.org/10.1038/35046102
  168. Hattersley, G., Dorey, E., Horton, M. A. and Chambers, T. J. (1988) Human macrophage colony-stimulating factor inhibits bone resorption by osteoclasts disaggregated from rat bone. J. Cell. Physiol. 137, 199-203. https://doi.org/10.1002/jcp.1041370125
  169. Gao, Y., Grassi, F., Ryan, M. R., Terauchi, M., Page, K., Yang, X., Weitzmann, M. N. and Pacifici, R. (2007) IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J. Clin. Invest. 117, 122-132. https://doi.org/10.1172/JCI30074
  170. Gowen, M., MacDonald, B. R. and Russell, G. G. (1988) Actions of recombinant human gamma-interferon and tumor necrosis factor alpha on the proliferation and osteoblastic characteristics of human trabecular bone cells in vitro. Arthritis. Rheum. 31, 1500-1507. https://doi.org/10.1002/art.1780311206
  171. Mann, G. N., Jacobs, T. W., Buchinsky, F. J., Armstrong, E. C., Li, M., Ke, H. Z., Ma, Y. F., Jee, W. S. S. and Epstein, S. (1994) Interferon-gamma causes loss of bone volume in vivo and fails to ameliorate cyclosporin A-induced osteopenia. Endocrinology 135, 1077-1083. https://doi.org/10.1210/en.135.3.1077
  172. Key, L. L., Jr., Rodriguiz, R. M., Willi, S. M., Wright, N. M., Hatcher, H. C., Eyre, D. R., Cure, J. K., Griffin, P. P. and Ries, W. L. (1995) Long-term treatment of osteopetrosis with recombinant human interferon gamma. N. Eng. J. Med. 332, 1594-1599. https://doi.org/10.1056/NEJM199506153322402
  173. Vignery, A., Niven-Fairchild, T. and Shepard, M. H. (1990) Recombinant murine interferon-gamma inhibits the fusion of mouse alveolar macrophages in vitro but stimulates the formation of osteoclast-like cells on implanted syngenic bone particles in mice in vivo. J. Bone Min. Res. 5, 637-644. https://doi.org/10.1002/jbmr.5650050613
  174. Takayanagi, H., Kim, S., Matsuo, K., Suzuki, H., Suzuki, T., Sato, K., Yokochi, T., Oda, H., Nakamura, K., Ida, N., Wagner, E. F. and Taniguchi, T. (2002) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416, 744-749. https://doi.org/10.1038/416744a
  175. Fox, S. W., Haque, S. J., Lovibond, A. C. and Chambers, T. J. (2003) The possible role of TGF-beta-induced suppressors of cytokine signaling expression in osteoclast/ macrophage lineage commitment in vitro. J. Immunol. 170, 3679-3687. https://doi.org/10.4049/jimmunol.170.7.3679
  176. Hayashi, T., Kaneda, T., Toyama, Y., Kumegawa, M. and Hakeda, Y. (2002) Regulation of receptor activator of NF-kappa B ligand-induced osteoclastogenesis by endogenous interferon-beta (INF-beta ) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs- in IFN-beta-inhibited osteoclast formation. J. Biol. Chem. 277, 27880-27886. https://doi.org/10.1074/jbc.M203836200
  177. Avnet, S., Cenni, E., Perut, F., Granchi, D., Brandi, M. L., Giunti, A. and Baldini, N. (2007) Interferon-alpha inhibits in vitro osteoclast differentiation and renal cell carcinoma- induced angiogenesis. Int. J. Oncol. 30, 469-476.
  178. Goodman, G. R., Dissanayake, I. R., Gorodetsky, E., Zhou, H., Ma, Y. F., Jee, W. S. and Epstein, S. (1999) Interferon-alpha, unlike interferon-gamma, does not cause bone loss in the rat. Bone 25, 459-463. https://doi.org/10.1016/S8756-3282(99)00182-9
  179. Lewis, D. B., Liggitt, H. D., Effmann, E. L., Motley, S. T., Teitelbaum, S. L., Jepsen, K. J., Goldstein, S. A., Bonadio, J., Carpenter, J. and Perlmutter, R. M. (1993) Osteoporosis induced in mice by overproduction of interleukin 4. Proc. Natl. Acad. Sci. U. S. A. 90, 11618-11622. https://doi.org/10.1073/pnas.90.24.11618
  180. Shioi, A., Teitelbaum, S. L., Ross, F. P., Welgus, H. G., Suzuki, H., Ohara, J. and Lacey, D. L. (1991) Interleukin 4 inhibits murine osteoclast formation in vitro. J. Cell. Biochem. 47, 272-277. https://doi.org/10.1002/jcb.240470313
  181. Okada, Y., Morimoto, I., Ura, K., Nakano, Y., Tanaka, Y., Nishida, S., Nakamura, T. and Eto, S. (1998) Short-term treatment of recombinant murine interleukin-4 rapidly inhibits bone formation in normal and ovariectomized mice. Bone 22, 361-365. https://doi.org/10.1016/S8756-3282(97)00296-2
  182. Onoe, Y., Miyaura, C., Kaminakayashiki, T., Nagai, Y., Noguchi, K., Chen, Q.R., Seo, H., Ohta, H., Nozawa, S., Kudo, I. and Suda, T. (1996) IL-13 and IL-4 inhibit bone resorption by suppressing cyclooxygenase- 2-dependent prostaglandin synthesis in osteoblasts. J. Immunol. 156, 758-764.
  183. Lind, M., Deleuran, B., Yssel, H., Fink-Eriksen, E. and Thestrup-Pedersen, K. (1995) IL-4 and IL-13, but not IL-10, are chemotactic factors for human osteoblasts. Cytokine 7, 78-82. https://doi.org/10.1006/cyto.1995.1010
  184. Palmqvist, P., Lundberg, P., Persson, E., Johansson, A., Lundgren, I., Lie, A., Conaway, H. H. and Lerner, U. H. (2006) Inhibition of hormone and cytokine-stimulated osteoclastogenesis and bone resorption by interleukin-4 and interleukin-13 is associated with increased osteoprotegerin and decreased RANKL and RANK in a STAT6- dependent pathway. J. Biol. Chem. 281, 2414-2429. https://doi.org/10.1074/jbc.M510160200
  185. Bendixen, A. C., Shevde, N. K., Dienger, K. M., Willson, T. M., Funk, C. D. and Pike, J. W. (2001) IL-4 inhibits osteoclast formation through a direct action on osteoclast precursors via peroxisome proliferator-activated receptor gamma 1. Proc. Natl. Acad. Sci. U. S. A. 98, 2443-2448. https://doi.org/10.1073/pnas.041493198
  186. Kamel Mohamed, S. G., Sugiyama, E., Shinoda, K., Hounoki, H., Taki, H., Maruyama, M., Miyahara, T. and Kobayashi, M. (2005) Interleukin-4 inhibits RANKL-induced expression of NFATc1 and c-Fos: A possible mechanism for downregulation of osteoclastogenesis. Biochem. Biophy. Res. Comm. 329, 839-845. https://doi.org/10.1016/j.bbrc.2005.02.049
  187. Mangashetti, L. S., Khapli, S. M. and Wani, M. R. (2005) IL-4 inhibits bone-resorbing activity of mature osteoclasts by affecting NF-kappa B and Ca2+ signaling. J. Immunol. 175, 917-925. https://doi.org/10.4049/jimmunol.175.2.917
  188. Moreno, J. L., Kaczmareck, M., Keegan, A. D. and Tondravi, M. (2003) IL-4 suppresses both osteoclast development and mature osteoclast function by a STAT6- dependent mechanism: irreversible inhibition of the differentiation program activated by RANKL. Blood 102, 1078-1086. https://doi.org/10.1182/blood-2002-11-3437
  189. Yamada, A., Takami, M., Kawawa, T., Yasuhara, R., Zhao, B., Mochizuki, A., Miyamoto, Y., Eto, T., Yasuda, H., Nakamichi, Y., Kim, N., Katagiri, T., Suda, T. and Kamijo, R. (2007) Interleukin-4 inhibition of osteoclast differentiation is stronger than that of interleukin-13 and they are equivalent for induction of osteoprotegerin production from osteoblasts. Immunology 120, 573-579. https://doi.org/10.1111/j.1365-2567.2006.02538.x
  190. Baugh, J. A. and Bucala, R. (2002) Macrophage migration inhibitory factor. Crit. Care Med. 30, S27-S35. https://doi.org/10.1097/00003246-200201001-00004
  191. Onodera, S., Sasaki, S., Ohshima, S., Amizuka, N., Li, M., Udagawa, N., Irie, K., Nishihira, J., Koyama, Y., Shiraishi, A., Tohyama, H. and Yasudam, K. (2006) Transgenic mice overexpressing macrophage migration inhibitory factor (MIF) exhibit high-turnover osteoporosis. J. Bone Min. Res. 21, 876-885. https://doi.org/10.1359/jbmr.060310
  192. Oshima, S., Onodera, S., Amizuka, N., Li, M., Irie, K., Watanabe, S., Koyama, Y., Nishihira, J., Yasuda, K. and Minami, A. (2006) Macrophage migration inhibitory factor- deficient mice are resistant to ovariectomy-induced bone loss. FEBS Lett. 580, 1251-1256. https://doi.org/10.1016/j.febslet.2006.01.038
  193. Ashcroft, G. S., Mills, S. J., Lei, K., Gibbons, L., Jeong, M. J., Taniguchi, M., Burow, M., Horan, M. A., Wahl, S. M. and Nakayama, T. (2003) Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor. J. Clin. Invest. 111, 1309-1318. https://doi.org/10.1172/JCI16288
  194. Onodera, S., Suzuki, K., Kaneda, K., Fujinaga, M. and Nishihira, J. (1999) Growth factor-induced expression of macrophage migration inhibitory factor in osteoblasts: relevance to the plasminogen activator system. Semin. Thromb. Hemost. 25, 563-568. https://doi.org/10.1055/s-2007-994966
  195. Onodera, S., Nishihira, J., Iwabuchi, K., Koyama, Y., Yoshida, K., Tanaka, S. and Minami, A. (2002) Macrophage migration inhibitory factor up-regulates matrix metalloproteinase-9 and -13 in rat osteoblasts. Relevance to intracellular signaling pathways. J. Biol. Chem. 277, 7865-7874. https://doi.org/10.1074/jbc.M106020200
  196. Lee, S., Jacquin, C., Leng, L., Bucala, R. and Kuchel, G. (2006) Macrophage migration inhibitory factor is an inhibitor of osteoclastogenesis in vitro and in vivo. J. Bone Min. Res. 21, S162.
  197. Takeda, K. and Akira, S. (2004) TLR signaling pathways. Semin. Immunol. 16, 3-9. https://doi.org/10.1016/j.smim.2003.10.003
  198. Takami, M., Kim, N., Rho, J. and Choi, Y. (2002) Stimulation by toll-like receptors inhibits osteoclast differentiation. J. Immunol. 169, 1516-1523. https://doi.org/10.4049/jimmunol.169.3.1516
  199. Nair, S. P., Meghji, S., Wilson, M., Reddi, K., White, P. and Henderson, B. (1996) Bacterially induced bone destruction: mechanisms and misconceptions. Infect. Immun. 64, 2371-2380.
  200. Kikuchi, T., Matsuguchi, T., Tsuboi, N., Mitani, A., Tanaka, S., Matsuoka, M., Yamamoto, G., Hishikawa, T., Noguchi, T. and Yoshikai, Y. (2001) Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors. J. Immunol. 166, 3574-3579. https://doi.org/10.4049/jimmunol.166.5.3574
  201. Hayashi, S., Yamada, T., Tsuneto, M., Yamane, T., Takahashi, M., Shultz, L. D. and Yamazaki, H. (2003) Distinct osteoclast precursors in the bone marrow and extramedullary organs characterized by responsiveness to Toll-like receptor ligands and TNF-alpha. J. Immunol. 171, 5130-5139. https://doi.org/10.4049/jimmunol.171.10.5130
  202. Teng, Y. T., Nguyen, H., Gao, X., Kong, Y. Y., Gorczynski, R. M., Singh, B., Ellen, R. P. and Penninger, J. M. (2000) Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J. Clin. Invest. 106, R59-67. https://doi.org/10.1172/JCI10763
  203. Maruyama, K., Takada, Y., Ray, N., Kishimoto, Y., Penninger, J. M., Yasuda, H. and Matsuo, K. (2006) Receptor activator of NF-kappa B ligand and osteoprotegerin regulate proinflammatory cytokine production in mice. J. Immunol. 177, 3799-3805. https://doi.org/10.4049/jimmunol.177.6.3799
  204. Li, H., Cuartas, E., Cui, W., Choi, Y., Crawford, T. D., Ke, H. Z., Kobayashi, K. S., Flavell, R. A. and Vignery, A. (2005) IL-1 receptor-associated kinase M is a central regulator of osteoclast differentiation and activation. J. Exp. Med. 201, 1169-1177. https://doi.org/10.1084/jem.20041444

Cited by

  1. Human Osteoclasts Are Inducible Immunosuppressive Cells in Response to T cell-Derived IFN-γ and CD40 Ligand In Vitro vol.29, pp.12, 2014, https://doi.org/10.1002/jbmr.2294
  2. Expression of Inflammatory Cytokines and Chemokines in Replanted Permanent Teeth with External Root Resorption vol.43, pp.2, 2017, https://doi.org/10.1016/j.joen.2016.10.018
  3. TWEAK Promotes Osteoclastogenesis in Rheumatoid Arthritis vol.183, pp.3, 2013, https://doi.org/10.1016/j.ajpath.2013.05.027
  4. The relationship between pro-resorptive inflammatory cytokines and the effect of high dose vitamin D supplementation on their circulating concentrations vol.17, pp.3, 2013, https://doi.org/10.1016/j.intimp.2013.08.010
  5. The involvement of oxidants and NF-κB in cytokine-induced MMP-9 synthesis by bone marrow-derived osteoprogenitor cells vol.61, pp.7, 2012, https://doi.org/10.1007/s00011-012-0461-7
  6. Experimental Traumatic Brain Injury Induces Bone Loss in Rats vol.33, pp.23, 2016, https://doi.org/10.1089/neu.2014.3836
  7. Intramembranous Bone Healing Process Subsequent to Tooth Extraction in Mice: Micro-Computed Tomography, Histomorphometric and Molecular Characterization vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0128021
  8. Communication between the skeletal and immune systems vol.1, pp.2, 2015, https://doi.org/10.1016/j.afos.2015.09.004
  9. Fracture Healing Is Delayed in Immunodeficient NOD/scid‑IL2Rγcnull Mice vol.11, pp.2, 2016, https://doi.org/10.1371/journal.pone.0147465
  10. CXCL16 upregulates RANKL expression in rheumatoid arthritis synovial fibroblasts through the JAK2/STAT3 and p38/MAPK signaling pathway vol.65, pp.3, 2016, https://doi.org/10.1007/s00011-015-0905-y
  11. Gut microbiota induce IGF-1 and promote bone formation and growth vol.113, pp.47, 2016, https://doi.org/10.1073/pnas.1607235113
  12. Gingival Crevicular Fluid Osteocalcin, N-Terminal Telopeptides, and Calprotectin Levels in Cyclosporin A–Induced Gingival Overgrowth vol.82, pp.10, 2011, https://doi.org/10.1902/jop.2011.100600
  13. Mechanisms of interferon-β effects on bone homeostasis vol.77, pp.12, 2009, https://doi.org/10.1016/j.bcp.2009.01.007
  14. Absolute and age-dependent elevations of serum calcium and phosphate and their products in clinical opiate dependence vol.19, pp.1-2, 2014, https://doi.org/10.3109/14659891.2012.754507
  15. The Great Beauty of the osteoclast vol.558, 2014, https://doi.org/10.1016/j.abb.2014.06.017
  16. Exposure to Air pollution Increases the Risk of Osteoporosis vol.94, pp.17, 2015, https://doi.org/10.1097/MD.0000000000000733
  17. Lactoferrin-induced growth factors and cytokines expression profile in pre-osteoblast MC3T3-E1 cell and LRP1 stable knockdown MC3T3-E1 cell vol.37, 2017, https://doi.org/10.1016/j.jff.2017.07.023
  18. Reprint of: The Great Beauty of the osteoclast vol.561, 2014, https://doi.org/10.1016/j.abb.2014.08.009
  19. MKP-1 signaling events are required for early osteoclastogenesis in lineage defined progenitor populations by disrupting RANKL-induced NFATc1 nuclear translocation vol.60, 2014, https://doi.org/10.1016/j.bone.2013.11.012
  20. Biological therapy of bone defects: the immunology of bone allo-transplantation vol.10, pp.6, 2010, https://doi.org/10.1517/14712598.2010.481669
  21. Effects of polyhexamethylene guanidine phosphate on human gingival fibroblasts vol.75, pp.7, 2017, https://doi.org/10.1080/00016357.2017.1350993
  22. The relationship between osteoclastogenic and anti-osteoclastogenic pro-inflammatory cytokines differs in human osteoporotic and osteoarthritic bone tissues vol.19, pp.1, 2012, https://doi.org/10.1186/1423-0127-19-28
  23. Response of Bone Turnover Markers and Cytokines to High-Intensity Low-Impact Exercise vol.47, pp.7, 2015, https://doi.org/10.1249/MSS.0000000000000555
  24. TNFα inhibits the development of osteoclasts through osteoblast-derived GM-CSF vol.49, pp.5, 2011, https://doi.org/10.1016/j.bone.2011.08.003
  25. Acute hematopoietic stress in mice is followed by enhanced osteoclast maturation in the bone marrow microenvironment vol.42, pp.11, 2014, https://doi.org/10.1016/j.exphem.2014.07.262
  26. Chemotactic and Immunoregulatory Properties of Bone Cells are Modulated by Endotoxin-Stimulated Lymphocytes vol.35, pp.5, 2012, https://doi.org/10.1007/s10753-012-9477-y
  27. Kruppel-like factor 4 attenuates osteoblast formation, function, and cross talk with osteoclasts vol.204, pp.6, 2014, https://doi.org/10.1083/jcb.201308102
  28. Infantile Malignant, Autosomal Recessive Osteopetrosis: The Rich and The Poor vol.84, pp.1, 2009, https://doi.org/10.1007/s00223-008-9196-4
  29. Adherent Endotoxin on Dental Implant Surfaces: A Reappraisal vol.41, pp.1, 2015, https://doi.org/10.1563/AAID-JOI-D-12-00137
  30. Interleukin-21 promotes osteoclastogenesis in humans with rheumatoid arthritis and in mice with collagen-induced arthritis vol.64, pp.3, 2012, https://doi.org/10.1002/art.33390
  31. Microbial antigens mediate HLA-B27 diseases via TLRs vol.32, pp.3-4, 2009, https://doi.org/10.1016/j.jaut.2009.02.010
  32. Cytocompatibility of nitrogen plasma ion immersed medical cobalt-chromium alloys vol.102, pp.6, 2014, https://doi.org/10.1002/jbm.a.34842
  33. The effect of local application of melatonin gel on the healing of periodontal osseous defects in experimentally induced diabetes in rabbits vol.10, pp.2, 2013, https://doi.org/10.1016/j.tdj.2013.08.003
  34. STA-21, a Promising STAT-3 Inhibitor That Reciprocally Regulates Th17 and Treg Cells, Inhibits Osteoclastogenesis in Mice and Humans and Alleviates Autoimmune Inflammation in an Experimental Model of Rheumatoid Arthritis vol.66, pp.4, 2014, https://doi.org/10.1002/art.38305
  35. Outdoor air pollution, bone density and self-reported forearm fracture: the Oslo Health Study vol.21, pp.10, 2010, https://doi.org/10.1007/s00198-009-1130-8
  36. Does Visceral or Subcutaneous Fat Influence Peripheral Cortical Bone Strength During Adolescence? A Longitudinal Study vol.33, pp.4, 2017, https://doi.org/10.1002/jbmr.3325
  37. Regulation of Osteoclast Differentiation by Cytokine Networks vol.18, pp.1, 2018, https://doi.org/10.4110/in.2018.18.e8
  38. Current Advances in Immunomodulatory Biomaterials for Bone Regeneration pp.21922640, 2018, https://doi.org/10.1002/adhm.201801106
  39. Tailoring the immuno-responsiveness of anodized nano-engineered titanium implants vol.6, pp.18, 2018, https://doi.org/10.1039/C8TB00450A
  40. Physical Activity and Bone Health: What Is the Role of Immune System? A Narrative Review of the Third Way vol.10, pp.1664-2392, 2019, https://doi.org/10.3389/fendo.2019.00060