DOI QR코드

DOI QR Code

Expression Analysis of miRNAs in Porcine Fetal Skeletal Muscle on Days 65 and 90 of Gestation

  • Chen, Jian-hai (Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University) ;
  • Wei, Wen-Juan (Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University) ;
  • Xiao, Xiao (Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University) ;
  • Zhu, Meng-Jin (Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University,) ;
  • Fan, Bin (Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University,) ;
  • Zhao, Shu-Hong (Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University)
  • Received : 2007.09.16
  • Accepted : 2008.01.21
  • Published : 2008.07.01

Abstract

MiRNAs (microRNAs) are a class of small non-coding RNA molecules of ~21 nucleotides that down- regulate the expression of target genes at post-transcriptional level. In this study, we first accomplished a preliminary scan of miRNA expression using 65 and 90 day fetal pig skeletal muscle samples by microarray hybridization, and 34 miRNAs showed strong positive signals. Five of these miRNAs were selected for further investigation by real-time RT-PCR. The statistical analyses indicated that three miRNAs exhibited significant differential expression (p<0.05) during porcine muscle development from 65 to 90 days of gestation, e.g., miR-24 and miR-424 were down-regulated while miR-133a was up-regulated. Multi-tissue RT-PCR was performed to detect the expression patterns of the five miRNA precursors. The results showed that most of these precursor miRNAs were ubiquitously expressed in different porcine tissues.

Keywords

References

  1. Ambros, V. 2003. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113:673-676. https://doi.org/10.1016/S0092-8674(03)00428-8
  2. Bartel, D. P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
  3. Bernstein, E., S. Y. Kim, M. A. Carmell, E. P. Murchison, H. Alcorn, M. Z. Li, A. A. Mills, S. J. Elledge, K. V. Anderson and G. J. Hannon. 2003. Dicer is essential for mouse development. Nat Genet. 35:215-217. https://doi.org/10.1038/ng1253
  4. Cagnazzo, M., M. F. te Pas, J. Priem, A. A. de Wit, M. H. Pool, R. Davoli and V. Russo. 2006. Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics. J. Anim. Sci. 84:1-10. https://doi.org/10.2527/2006.8411
  5. Chen, J. F., E. M. Mandel, J. M. Thomson, Q. Wu, T. E. Callis, S. M. Hammond, F. L. Conlon and D. Z. Wang. 2006. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38:228-233. https://doi.org/10.1038/ng1725
  6. Chul, W. K., K. T. Chang, Y. H. Hong, W. Y. Jung, E. J. Kwon, K. K. Cho, K. H. Chung, B. W. Kim, J. G. Lee, J. S. Yeo, Y. S. Kang and Y. K. Joo. 2005. cDNA microarray analysis of the gene expression profile of wwine muscle. Asian-Aust. J. Anim. Sci. 18:1080-1087. https://doi.org/10.5713/ajas.2005.1080
  7. Esau, C., X. Kang, E. Peralta, E. Hanson, E. G. Marcusson, L. V. Ravichandran, Y. Sun, S. Koo, R. J. Perera, R. Jain, N. M. Dean, S. M. Freier, C. F. Bennett, B. Lollo and R. Griffey. 2004. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279:52361-52365. https://doi.org/10.1074/jbc.C400438200
  8. Eun, C., W. Y. Jung, E. J. Kwon, D. H. Park, K. H. Chung, K. K. Cho and C. W. Kim. 2007. Cloning and expression analysis of the subunit of porcine prolyl 4-hydroxylase. Asian-Aust. J. Anim. Sci. 20:1655-1661. https://doi.org/10.5713/ajas.2007.1655
  9. Giraldez, A. J., R. M. Cinalli, M. E. Glasner, A. J. Enright, J. M. Thomson, S. Baskerville, S. M. Hammond, D. P. Bartel and A. F. Schier. 2005. MicroRNAs regulate brain morphogenesis in zebrafish. Sci. 308:833-83. https://doi.org/10.1126/science.1109020
  10. Kim, H. J., X. S. Cui, E. J. Kim, W. J. Kim and N. H. Kim. 2006. New porcine microRNA genes found by homology search. Genome. 49:1283-1286. https://doi.org/10.1139/G06-120
  11. Kim, S. M., M. Y. Park, K. S. Swo, D. H. Yoon, H-G. Lee, Y. J. Choi and S. H. Kim. 2006. Analysis of differentially expressed proteins in bovine longissimus dorsi and biceps femores muscles . Asian-Aust. J. Anim. Sci. 19:1496-1502. https://doi.org/10.5713/ajas.2006.1496
  12. Lee, R. C., R. L. Feinbaum and V. Ambros. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843-854. https://doi.org/10.1016/0092-8674(93)90529-Y
  13. Nam-Kuk, K., J-H. Lim, M-J. Song, O-H. Kim, B-Y. Park, M-J. Kim, I-H. Hwang and C-S. Lee. 2007. Developmental proteomic profiling of porcine skeletal muscle during postnatal development. Asian-Aust. J. Anim. Sci. 20:1612-1617. https://doi.org/10.5713/ajas.2007.1612
  14. Olsen, P. H. and V. Ambros. 1999. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216:671-680. https://doi.org/10.1006/dbio.1999.9523
  15. Sawera, M., J. Gorodkin, S. Cirera and M. Fredholm. 2005. Mapping and expression studies of the mir17-92 cluster on pig chromosome 11. Mamm Genome. 16:594-598. https://doi.org/10.1007/s00335-005-0013-3
  16. Shi, R. and V. L. Chiang. 2005. Facile means for quantifying microRNA expression by real-time PCR. Bio Techniques. 39:519-525. https://doi.org/10.2144/000112010
  17. Swatland, H. J. 1994. Structure and development of meat animals and poultry. Technomic Publishing Company. Inc. Pennsylvania. pp. 495-563.
  18. Tang, Z. L., Y. Li, P. Wan, X. P. Li, S. H. Zhao, B. Liu, B. Fan, M. J. Zhu, M. Yu and K. Li. 2007. Long SAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biol. 8(6):R115.1-R115.18. https://doi.org/10.1186/gb-2007-8-6-r115
  19. Te Pas, M. F., A. A. C. de Wit, J. Priem, M. Cagnazzo, R. Davoli, V. Russo and M. H. Pool. 2005. Transcriptome expression profiles in prenatal pigs in relation to myogenesis. J. Muscle Res. Cell Motil. 26:157-165. https://doi.org/10.1007/s10974-005-7004-6
  20. Wernersson, R., M. H. Schierup, F. G. Jorgensen, J. Gorodkin, F. Panitz, H. H. Staerfeldt, O. F. Christensen, T. Mailund, H. Hornshoj, A. Klein, J. Wang, B. Liu, S. Hu, W. Dong, W. Li, G. K. Wong, J. Yu, C. Bendixen, M. Fredholm, S. Brunak, H. Yang and L. Bolund. 2005. Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics. 6(1):70. https://doi.org/10.1186/1471-2164-6-70
  21. Xu, P., M. Guo and B. A. Hay. 2004. MicroRNAs and the regulation of cell death. Trends Genet. 20:617-624. https://doi.org/10.1016/j.tig.2004.09.010
  22. Zhao, S. H., D. Kuhar, J. K. Lunney, H. D. Dawson, C. Guidry, J. Uthe, S. Bearson, J. Recknor, D. Nettleton and C. K. Tuggle. 2006. Gene expression profiling in salmonella choleraesuisinfected porcine lung using a long oligonucleotide microarray. Mamm Genome. 17:777-789. https://doi.org/10.1007/s00335-005-0155-3
  23. Zhao, S. H., D. Nettleton, W. Liu, C. Fitzsimmons, C. W. Ernst, N. E. Raney and C. K. Tuggle. 2003. Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle. J. Anim. Sci. 81:2179-2188. https://doi.org/10.2527/2003.8192179x
  24. Zhao, S. H., J. Yu, B. Liu, B. Fan, M. J. Zhu, T. A. Xiong, M. Yu and K. Li. 2005. The porcine FBXO32 gene: map assignment, SNP detection and tissue expression. Anim. Genet. 36:451-452. https://doi.org/10.1111/j.1365-2052.2005.01339.x

Cited by

  1. Transcriptional profiling and miRNA-dependent regulatory network analysis of longissimus dorsi muscle during prenatal and adult stages in two distinct pig breeds vol.44, pp.4, 2013, https://doi.org/10.1111/age.12032
  2. MicroRNA expression profiles differ between primary myofiber of lean and obese pig breeds vol.12, pp.7, 2017, https://doi.org/10.1371/journal.pone.0181897
  3. Expression Profiling of Activin type IIB Receptor During Ontogeny in Broiler and Indigenous Chicken vol.28, pp.1, 2017, https://doi.org/10.1080/10495398.2016.1194287
  4. Effects of Castration on Androgen Receptor, IGF-I Ea, MGF and Myostatin Gene Expression in Skeletal Muscles of Male Pigs vol.22, pp.8, 2008, https://doi.org/10.5713/ajas.2009.80632
  5. Role of microRNAs in myogenesis and their effects on meat quality in pig - A review vol.33, pp.12, 2008, https://doi.org/10.5713/ajas.20.0324