Gamma-Irradiation Enhances RECK Protein Levels in Panc-1 Pancreatic Cancer Cells

  • Kim, Na Young (Laboratory of Cellular Oncology, Korea University Graduate School of Medicine) ;
  • Lee, Jung Eun (Laboratory of Cellular Oncology, Korea University Graduate School of Medicine) ;
  • Chang, Hyeu Jin (Laboratory of Cellular Oncology, Korea University Graduate School of Medicine) ;
  • Lim, Chae Seung (Department of Laboratory Medicine, Korea University Graduate School of Medicine) ;
  • Nam, Deok Hwa (Department of Laboratory Medicine, Korea University Graduate School of Medicine) ;
  • Min, Bon Hong (Department of Pharmacology, Korea University Graduate School of Medicine) ;
  • Park, Gil Hong (Department of Biochemistry, Korea University Graduate School of Medicine) ;
  • Oh, Jun Seo (Laboratory of Cellular Oncology, Korea University Graduate School of Medicine)
  • Received : 2007.07.30
  • Accepted : 2007.10.09
  • Published : 2008.02.29

Abstract

Radiotherapy is an important treatment for many malignant tumors, but there are recent reports that radiation may increase the malignancy of cancer cells by stimulating expression of type IV collagenases. In this study, we examined changes in matrix metalloproteinase (MMP) inhibitors, such as the tissue inhibitors of metalloproteinase (TIMP)-1, TIMP-2 and RECK, in response to irradiation in Panc-1 pancreatic cancer cells. Irradiation increased RECK protein levels but not mRNA levels, whereas no significant changes were found in TIMP-1 and TIMP-2. The enhanced RECK protein levels were associated with an increase in MMP inhibitory activity. However, irradiation slightly but reproducibly increased the invasiveness of the Panc-1 cells. Like irradiation, treatment of Panc-1 cells with transforming growth factor $(TGF)-{\beta}1$ led to a 2-fold increase in RECK protein levels. Transient transfection with Smad3 also increased RECK protein levels, but transfection with Smad7 markedly reduced them. Stable expression of Smad7 and treatment with SB431542, an inhibitor of $TGF-{\beta}$ receptor I kinase, abolished $TGF-{\beta}1$- and radiation-mediated effects on RECK. Furthermore, irradiation increased levels of phosphorylated Smad3. We conclude that radiation post-transciptionally enhances RECK protein levels in Panc-1 cells, at least in part, via $TGF-{\beta}$ signaling, and that irradiation increases Panc-1 invasiveness via a mechanism that may not be linked to MMP-2 activity.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. Araya, J., Maruyama, M., Sassa, K., Fujita, T., Hayashi, R., Matsui, S., Kashii, T., Yamashita, N., Sugiyama, E., and Kobayashi, M. (2001). Ionizing radiation enhances matrix metalloproteinase-2 production in human lung epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 280, L30-38
  2. Baker, A.H., Edwards, D.R., and Murphy, G. (2002). Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J. Cell Sci. 115, 3719-3727 https://doi.org/10.1242/jcs.00063
  3. Bhowmick, N.A. and Moses, H.L. (2005). Tumor-stroma interactions. Curr. Opin. Genet. Dev. 15, 97-101 https://doi.org/10.1016/j.gde.2004.12.003
  4. Brooks, P.C., Broek, D., Roth, J., DeWyngaert, K., and Formenti, S.C. (2001). Differential effects of ionizing radiation on angiogenesis and matrix metalloproteinases (MMPs) activity in vitro and in vivo (Abstr.). Int. J. Radiat. Oncol. Biol. Phys. 51, S1-156
  5. Burger, A., Loffler, H., Bamberg, M., and Rodemann, H.P. (1998). Molecular and cellular basis of radiation fibrosis. Int. J. Radiat. Biol. 73, 401-408 https://doi.org/10.1080/095530098142239
  6. Camphausen, K., Moses, M.A., Beecken, W.D., Khan, M.K., Folkman, J., and O'Reilly, M.S. (2001). Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res. 61, 2207-2211
  7. Cheng, J.C., Chou, C.H., Kuo, M.L., and Hsieh, C.Y. (2006). Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF-kappaB signal transduction pathway. Oncogene 25, 7009-7018 https://doi.org/10.1038/sj.onc.1209706
  8. Correa, T.C., Brohem, C.A., Winnischofer, S.M., da Silva Cardeal, L.B., Sasahara, R.M., Taboga, S.R., Sogayar, M.C., and Maria- Engler, S.S. (2006). Downregulation of the RECK-tumor and metastasis suppressor gene in glioma invasiveness. J. Cell. Biochem. 99, 156-167 https://doi.org/10.1002/jcb.20917
  9. Dvorak, H.F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation an wound healing. N. Engl. J. Med. 315, 1650-1659 https://doi.org/10.1056/NEJM198612253152606
  10. Egeblad, M. and Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161-174 https://doi.org/10.1038/nrc745
  11. Ellenrieder, V., Hendler, S.F., Boeck, W., Seufferlein, T., Menke, A., Ruhland, C., Adler, G., and Gress, T.M. (2001). Transforming growth factor $\beta$1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res. 61, 4222-4228
  12. Fu, K.K. and Phillips, T.L. (1991). Biologic rationale of combined radiotherapy and chemotherapy. Hematol. Oncol. Clin. North. Am. 5, 737-751
  13. Furumoto, K., Arii, S., Mori, A., Furuyama, H., Gorrin Rivas, M.J., Nakao, T., Isobe, N., Murata, T., Takahashi, C., Noda, M., et al. (2001). RECK gene expression in hepatocellular carcinoma: correlation with invasion-related clinicopathological factors and its clinical significance. Reverse-inducing--cysteinerich protein with Kazal motifs. Hepatology 33, 189-195 https://doi.org/10.1053/jhep.2001.21048
  14. Gaspar, N.J., Li, L., Kapoun, A.M., Medicherla, S., Reddy, M., Li, G., O'Young, G., Quon, D., Henson, M., Damm, D.L., et al. (2007). Inhibition of transforming growth factor $\beta$ signaling reduces pancreatic adenocarcinoma growth and invasiveness. Mol. Pharmacol. 72, 152-161 https://doi.org/10.1124/mol.106.029025
  15. Hovdenak, N., Wang, J., Sung, C.C., Kelly, T., Fajardo, L.F., and Hauer-Jenson, M. (2002). Clinical significance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 53, 919-927 https://doi.org/10.1016/S0360-3016(02)02808-0
  16. Jiang, Y., Goldberg, I.D., and Shi, Y.E. (2002). Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 21, 2245-2252 https://doi.org/10.1038/sj.onc.1205291
  17. Leask, A. and Abraham, D.J. (2004). TGF-beta signaling and the fibrotic response. FASEB J. 18, 816-827 https://doi.org/10.1096/fj.03-1273rev
  18. Martin, M., Lefaix, J., and Delanian, S. (2000). TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int. J. Radiat. Oncol. Biol. Phys. 47, 277-290 https://doi.org/10.1016/S0360-3016(00)00435-1
  19. Nagase, H. and Woessner, J.F. (1999). Matrix metalloproteinases. J. Biol. Chem. 274, 21491-21494 https://doi.org/10.1074/jbc.274.31.21491
  20. Nguyen, N.P., Antoine, J.E., Dutta, S., Karlsson, U., and Sallah, S. (2002). Current concepts in radiation enteritis and implications for future clinical trials. Cancer 95, 1151-1163 https://doi.org/10.1002/cncr.10766
  21. Ogawa, K., Utsunomiya, T., Mimoi, K., Tanaka, F., Haraguchi, N., Inoue, H., Murayama, S., and Mori, M. (2006). Differential gene expression profiles of radioresistant pancreatic cancer cell lines established by fractionated irradiation. Int. J. Oncol. 28, 705-713
  22. Oh, J., Takahashi, R., Kondo, S., Mizoguchi, A., Adachi, E., Sasahara, R.M., Nishimura, S., Imamura, Y., Kitayama, H., Alexander, D.B., et al. (2001). The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107, 789-800 https://doi.org/10.1016/S0092-8674(01)00597-9
  23. Oh, J., Seo, D.W., Diaz, T., Wei, B., Ward, Y., Ray, J.M., Morioka, Y., Shi, S., Kitayama, H., Takahashi, C., et al. (2004). Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Res. 64, 9062-9069 https://doi.org/10.1158/0008-5472.CAN-04-1981
  24. Oh, J., Kim, N., Seo, S., and Kim, I.-H. (2007). Alteration of extracellular matrix modulators after nonablative laser therapy in skin rejuvenation. Br. J. Dermatol. 157, 306-310 https://doi.org/10.1111/j.1365-2133.2007.08061.x
  25. Qian, L.W., Mizumoto, K., Urashima, T., Nagai, E., Maehara, N., Sato, N., Nakajima, M., and Tanaka, M. (2002). Radiationinduced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin. Cancer Res. 8, 1223-1227
  26. Rodningen, O.K., Overgaard, J., Alsner, J., Hastie, T., and Borresen- Dale, A.L. (2005). Microarray analysis of the transcriptional response to single or multiple doses of ionizing radiation in human subcutaneous fibroblasts. Radiother. Oncol. 77, 231-240 https://doi.org/10.1016/j.radonc.2005.09.020
  27. Sasahara, R.M., Takahashi, C., and Noda, M. (1999). Involvement of the Sp1 site in ras-mediated downregulation of the RECK metastasis suppressor gene. Biochem. Biophys. Res. Commun. 264, 668-675 https://doi.org/10.1006/bbrc.1999.1552
  28. Schultze-Mosgau, S., Blaese, M.A., Grabenbauer, G., Wehrhan, F., Kopp, J., Amann, K., Rodemann, H.P., and Rodel, F. (2004). Smad-3 and Smad-7 expression following anti-transforming growth factor beta 1 (TGFbeta1)-treatment in irradiated rat tissue. Radiother. Oncol. 70, 249-259 https://doi.org/10.1016/j.radonc.2004.01.010
  29. Span, P.N., Sweep, C.G., Manders, P., Beex, L.V., Leppert, D., and Lindberg, R.L. (2003). Matrix metalloproteinase inhibitor reversion-inducing cysteine-rich protein with Kazal motifs. Cancer 97, 2710-2715 https://doi.org/10.1002/cncr.11395
  30. Speake, W.J., Dean, R.A., Kumar, A., Morris, T.M., Scholefield, J.H., and Watson, S.A. (2005). Radiation induced MMP expression from rectal cancer is short lived but contributes to in vitro invasion. Eur. J. Surg. Oncol. 31, 869-874 https://doi.org/10.1016/j.ejso.2005.05.016
  31. Sternlicht, M.D. and Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463-516 https://doi.org/10.1146/annurev.cellbio.17.1.463
  32. Takahashi, C., Sheng, Z., Horan, T.P., Kitayama, H., Maki, M., Hitomi, K., Kitaura, Y., Takai, S., Sasahara, R.M., Horimoto, A., et al. (1998). Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc. Natl. Acad. Sci. USA 95, 13221-13226
  33. Takenaka, K., Ishikawa, S., Kawano, Y., Yanagihara, K., Miyahara, R., Otake, Y., Morioka, Y., Takahashi, C., Noda, M., Wada, H., et al. (2004). Expression of a novel matrix metalloproteinase regulator, RECK, and its clinical significance in resected non-small cell lung cancer. Eur. J. Cancer 40, 1617-1623 https://doi.org/10.1016/j.ejca.2004.02.028
  34. Vu, T.H. and Werb, Z. (2000). Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 14, 2123-2133 https://doi.org/10.1101/gad.815400
  35. Wey, J.S., Fan, F., Gray, M.J., Bauer, T.W., McCarty, M.F., Somcio, R., Liu, W., Evans, D.B., Wu, Y., Hicklin, D.L., et al. (2005). Vascular endothelial growth factor receptor-1 promotes migration and invasion in pancreatic carcinoma cell lines. Cancer 104, 427-438 https://doi.org/10.1002/cncr.21145
  36. Wild-Bode, C., Weller, M., Rimner, A., Dichgans, J., and Wick, W. (2001). Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res. 61, 2744-2750
  37. Zhao, W., O'Malley, Y., Wei, S., and Robbins, M.E. (2000). Irradiation of rat tubule epithelial cells alters the expression of gene products associated with the synthesis and degradation of extracellular matrix. Int. J. Radiat. Biol. 76, 391-402 https://doi.org/10.1080/095530000138736