활성화된 플라이애쉬 혼입콘크리트의 철근부식거동에 관한 전기화학적 연구

Electrochemical Studies on the Corrosion Performance of Steel Embeded in Activated Fly Ash Blended Concrete

  • 투고 : 2008.04.16
  • 심사 : 2008.08.12
  • 발행 : 2008.11.30

초록

시멘트 대체 재료로서 플라이애쉬의 사용은 시멘트 생산비용을 절감시키는 효과를 창출하였다. 반면에 플라이애쉬 혼입콘크리트는 OPC에 비해 상대적으로 긴 양생시간과 초기강도의 발현 저하를 들 수 있어 이의 해결을 위해 물리적 방법, 온도 및 화학적 방법 등과 같은 다양한 활성화 기술의 적용을 통하여 플라이애쉬 혼입 콘크리트의 수화를 가속시킬 수 있고, 콘크리트의 부식 저항성을 향상시킬 수가 있다. 본 연구에서는 10~40%의 치환률을 가진 활성화된 플라이애쉬 시편을 통해 개방 회로형 전위측정(Open circuit potential measurement)을 수행하였고, 투수시험, 급속염화물침투시험 및 SEM(Scanning electron microscopy)촬영을 통해 OPC 콘크리트와 비교 분석 하였다. 또한, 치환률의 임계범위 20~30%의 경우에 있어서 활성화된 플라이애쉬를 사용한 콘크리트가 열화저항성에 있어서 개선효과가 나타나고 있음을 확인하였다. 또한 플라이애쉬를 화학적으로 활성화시킨 경우가 본 연구에서 수행된 다른 활성화 방법들에 비해 더욱 좋은 결과를 나타나고 있음도 확인하였다.

The use of fly ash to replace a portion of cement has resulted significant savings in the cost of cement production. Fly ash blended cement concretes require a longer curing time and their early strength is low when compared to ordinary Portland cement(OPC) concrete. By adopting various activation techniques such as physical, thermal and chemical method, hydration of fly ash blended cement concrete was accelerated and thereby improved the corrosion-resistance of concrete. Concrete specimens prepared with 10-40% of activated fly ash replacement were evaluated for their open circuit potential measurements, weight loss measurements, impedance measurements, linear polarization measurements, water absorption test, rapid chloride ion penetration test and scanning electron microscopy (SEM) test and the results were compared with those for OPC concrete without fly ash. All the studies confirmed that up to a critical level of 20-30% replacement; activated fly ash cement improved the corrosion-resistance properties of concrete. It was also confirmed that the chemical activation of fly ash better results than the other methods of activation investigated in this study.

키워드

과제정보

연구 과제 주관 기관 : 콘크리트 코리아 연구단

참고문헌

  1. F. Yueming, Y. Suhong, W. Zhiyun, Z. Jingyu, Activation of fly ash and its effects on cement properties. Cem. Conc. Res. 29, 1999, p. 467 https://doi.org/10.1016/S0008-8846(98)00178-1
  2. C. Shi, Early microstructure development of activated lime-fly ash pastes, Cem. Conc. Res. 26, 1996, p. 1351 https://doi.org/10.1016/0008-8846(96)00123-8
  3. T.R. Naik, S.S. Singh, Influence of fly ash on setting and hardening characteristics of concrete systems, ACI Mater. J. 94, 1997, p. 355
  4. J. Paya, J. Monzo, E. Peris-Mora, M.V. Borrachero, R. Tercero, C. Pinillos, Early strength development of Portland cement mortars containing air classified fly ashes. Cem. Conc. Res. 25, 1995, p. 449 https://doi.org/10.1016/0008-8846(95)00031-3
  5. J. Paya, J. Monzo, M.V. Borrachero, E. Peris-Mora, Mechanical treatment of fly ashes - Part I: Physico chemical characterization of ground fly ashes, Cem. Conc. Res. 25, 1995, p. 1469 https://doi.org/10.1016/0008-8846(95)00141-X
  6. J. Paya, J. Monzo, M.V. Borrachero, E. Peris-Mora, E. Gonzalez-Lopez, Mechanical treatment of fly ashes. Part II: Particle morphologies in orund fly ashes (GFA) and workability of GFA-cement mortars, Cem. Conc. Res. 26, 1996, p. 225 https://doi.org/10.1016/0008-8846(95)00212-X
  7. T.R. Naik, S.S. Singh, M.W. Hussain, Permeability of concrete containing large amounts of fly ash, Cem. Conc. Res. 24, 1994, p. 913 https://doi.org/10.1016/0008-8846(94)90011-6
  8. M. Thomas, Chloride thresholds in marine concrete, Cem. Concr. Res. 26, 1996, p. 513 https://doi.org/10.1016/0008-8846(96)00035-X
  9. S. Muralidharan, V. Saraswathy, K. Thangavel, S. Srinivasan, J. Appl. Electrochem. Competitive role of inhibitve and aggressive ions in the corrosion of steel in concrete, J. Applied Electro-chemistry, 30, 2000, p. 1255 https://doi.org/10.1023/A:1026570120698
  10. P.S. Mangat, B.T. Molloy, Influence of PFA, slag and micro silica on chloride-induced corrosion of reinforcement in concrete, Cem. Conc. Res. 21, 1991, p. 819 https://doi.org/10.1016/0008-8846(91)90177-J
  11. J. Bai, B.B. Sabir, S. Wild, J.M. Kinuthia, Magn. Strength development in concrete incorporating PFA and metakaolin. Concr. Res. 52, 2000, p. 153 https://doi.org/10.1680/macr.2000.52.3.153
  12. K.O. Ampadu, K. Toril, M. Kawamura, Beneficial effect of fly ash on chloride diffusivity of hardened cement paste, Cem. Conc. Res. 29, 1999, p. 585 https://doi.org/10.1016/S0008-8846(99)00047-2
  13. M.M. Salta, in: R.N. Swamy (Ed.), Influence of fly ash on chloride diffusion in concrete, vol. 2, Sheffield Academic Press, Sheffield, 1994, pp. 794-804
  14. J.P. Behera, B. Sarangi, B.D. Nayak, H.S. Ray, Investigations on the development of blended cements using activated fly ash. Ind. Concr. J. 74, 2000, p. 260
  15. V. Saraswathy, S. Muralidharan, R.M. Kalyanasundaram, K. Thangavel, S. Srinivasan, Evaluation of a composite corrosion inhibiting admixture and its performance in concrete under macro cell corrosion conditions. Cem. Conc. Res. 31, 2001, p. 789 https://doi.org/10.1016/S0008-8846(01)00468-9
  16. V. Saraswathy, S. Muralidharan, K. Thangavel, S. Srinivasan, Activated fly ash cements: tolerable limit of replacement for durable steel reinforced concrete. Adv. Cem. Res. 14, 2002, p. 9 https://doi.org/10.1680/adcr.2002.14.1.9
  17. V. Saraswathy, S. Muralidharan, K. Thangavel, S. Srinivasan, Influence of activated fly ash cements: tolerable limit of replacement for durable steel reinforced concrete. Cem. Conc. Comp. 25, 2003, p. 673 https://doi.org/10.1016/S0958-9465(02)00068-9
  18. R.D. Crow, E.R. Dunstan, Properties of fly ash concrete, in: S. Diamond (Ed.), Proc. on fly ash incorporation in hydrated cement system, Materials Research Society, Boston, MA, 1981, p. 214
  19. Y. Matsufuji, H. Kohata, K. Tagaya, H. Teramoto, Y. Okawa, S. Okazawa, in: V.M. Malhotra, Proceedings of the Fourth CANMET/ACI International Conference on the Use of Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Istanbul, Turkey, ACI, Detroit, MI, SP-132, vol. 1, 3-8 May 1992, p. 351
  20. R. Fang, T. Zhang, Cement Lime 1, 21 (in Chinese), 1992
  21. C. Liu, Z. Wen, Monograph on Dam Engineering Concrete (1): Alkali- Aggregate Reactions in Concrete Published (in Chinese), South China University of Technology, 1995, p. 354
  22. ASTM C 642-80, Standard Test Method for Specific Gravity, Absorption and Voids in Hardened Concrete, American Society of Testing and Materials, Philadelphia, 4, 1995, p. 318
  23. G. Gopalakrishnan, N.P. Rajamanee, M. Neelamegam, J.A. Peter, J.K. Dattatreya, Ind. Concr. J. 75, 2001, p. 335
  24. ASTM C876-1995: Standard Test Method for Half Cell Potentials of Reinforced Steel in Concrete, American Society of Testing and Materials, Philadelphia, 4