The Effects of Substrate Temperature on Properties of Carbon Nanotube Films Deposited by RF Plasma CVD

RF Plasma CVD법에 의해 증착된 카본나노튜브(CNT)의 특성에 대한 기판 온도의 영향

  • Kim, Dong-Sun (Department of chemical engineering, College of Eng., Kongju National University)
  • Received : 2007.12.07
  • Accepted : 2007.12.27
  • Published : 2008.02.28

Abstract

Carbon Nanotube (CNT) films were deposited with varying deposition temperature by RF plasma CVD on Fe catalysts deposited onto $SiO_2$ films grown thermally on the silicon wafer using $C_2H_2$ and $H_2$ gases. The Fe catalysts on silicon oxide film were made by RF magnetron sputtering. The grounded grid mesh cover on the substrate holder was used for depositing CNT thin films with high purity. The surface morphologies and chemical structure of deposited CNT films were characterized using SEM, Raman, XPS and TEM. It was observed that deposited CNTs films were carbon fiber type having Bamboo-like multiwall structure and CNT film grown at $600^{\circ}C$ was more dense than that at $550^{\circ}C$, but become less dense at $650^{\circ}C$.

RF plasma CVD법을 이용하여 금속 촉매(Fe)가 증착된 $SiO_2$ 기판 위에 $H_2$$C_2H_2$의 혼합가스를 사용하여 증착된 탄소나노튜브(carbon nanotube, CNT)의 특성에 대한 기판의 온도의 영향을 조사하였다. $SiO_2$ 위에 철 촉매는 RF 마그네트론 스퍼터에 의해 만들어졌다. 고 순도의 나노튜브 박막을 얻기 위해서 기판 홀더 위에 접지된 그리드 메쉬 커버를 설치하였다. 증착된 CNT의 표면 미세구조 및 화학적 구조를 SEM, Raman, XPS, 그리고 TEM으로 측정하였다. 증착된 CNT 박막들은 대나무 같은 다중벽 구조를 가지는 탄소 파이버 형태였으며 $55^{\circ}C$에서 보다 $600^{\circ}C$에서 보다 더 치밀한 구조를 보이나 $650^{\circ}C$에서는 밀도가 다소 감소함을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 공주대학교

References

  1. Iijima, S., "Helical Microtubule of Graphitic Carbon," Nature, 354, 56-58(1991). https://doi.org/10.1038/354056a0
  2. Dresselhaus, M. S., Dresselhaus, G. and Avouris, P., "Carbon Nanotubes: Synthesis, Structure, Properties and Applications," Springer, Berlin(2001).
  3. Lee, C. J., Park, J., Kim, J. M., Huh, Y. and No, K. S., "Lowtemperature Growth of Carbon Nanotubes by Thermal Chemical Vapor Deposition using Pd, Cr and Pt as Co-catalyst," Chem. Phys. Lett., 327(5-6), 277-283(2000). https://doi.org/10.1016/S0009-2614(00)00877-0
  4. Kishimoto, S., Kojima, Y., Ohnom Y., Sugai, T., Shinohara, H. and Mizutani, T., "Growth of Mm-long Carbon Nanotubes by Grid-inserted Plasma Enhanced Chemical Vapor Deposition," Jpn. J. Appl. Phys., 44(4A), 1554-1557(2005). https://doi.org/10.1143/JJAP.44.1554
  5. Show, Y., Yabe, Y., Izumi, T. and Yamauchi, H., "Development of Triode Type RF Plasma Enhanced CVD Equipment for Low Temperature Growth of Carbon Nanotube," Diamond Relat. Mater. 14(11-12), 1848-1851(2005). https://doi.org/10.1016/j.diamond.2005.06.002
  6. Park, K. C., Yoon, H. S., Ryu, J. H., Lim, S. H., Moon, J. H. and Jang, J., "Electron Emission from a Carbon Nanotube Grown in a Hole by Using a Triode Plasma-enhanced Chemical Vapor Deposition," J. Kor. Phys. Soc., 48(6), 1365-1368(2006).
  7. Kastner, J., Pichler, T., Kuzmany, H., Curran, S., Blau, W., Weldon, D. N., Delamesiere, M., Draper, S. and Zandbergen, H., "Resonance Raman and Infrared Spectroscopy of Carbon Nanotubes," Chem. Phys. Lett., 221(1.2), 53-58(1994). https://doi.org/10.1016/0009-2614(94)87015-2
  8. Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Souza Filho, A. G. and Saito, R., "Raman Spectroscopy on Isolated Single wall Carbon Nanotubes," Carbon, 40(12), 2043-2061(2002). https://doi.org/10.1016/S0008-6223(02)00066-0
  9. Sanjay, K., Srivastava, V. D. Vankar and Kumar, V., "Growth and Microstructures of Carbon Nanotube Films Prepared by Microwave Plasma Enhanced Chemical Vapor Deposition Process," Thin Solid Films, 515(4), 1152-1560(2006). https://doi.org/10.1016/j.tsf.2006.07.167
  10. Liao, K.-H. and Ting, J.-M., "Characteristics of Aligned Carbon Nanotubes Synthesized Using a High-rate Low-temperature Process," Diamond and Related Materials, 15(9), 1210-1216(2006). https://doi.org/10.1016/j.diamond.2005.08.029
  11. Yen, J. H., Leu, I. C., Wu, M. T., Lin, C. C. and Hon, M. H., "Effect of Nanowire Catalyst for Carbon Nanotubes Growth by ICP-CVD", Diamond and Related Materials, 14(3-7), 841-845(2005). https://doi.org/10.1016/j.diamond.2004.10.012
  12. Konya, Z., Vesselenyl, I., Kiss, J., Farkas, A., Oszko, A. and Kiricsi, I., "XPS Study of Multiwall Carbon Nanotube Synthesis on Ni-, V-, and Ni, V-ZSM-5 Catalysts," Applied Catalysis A: General, 260(1), 55-61(2004). https://doi.org/10.1016/j.apcata.2003.10.042
  13. Bratescu, M. A., Suda, Y., Sakai, Y., Saito, N. and Takai, O., "Role of Carbon Atoms in Plasma-enhanced Chemical Vapor Deposition for Carbon Nanotubes Synthesis," Thin Solid Films, 515(4), 1314-1319(2006). https://doi.org/10.1016/j.tsf.2006.03.022
  14. Okita, A., Suda, Y., Oda, A., Nakamura, J., Ozeki, A., Bhattacharyya, K., Sugawara, H. and Sakai, Y., "Effects of Hydrogen on Carbon Nanotube Formation in CH4/H2 Plasmas," Carbon, 45(7), 1518-1526(2007). https://doi.org/10.1016/j.carbon.2007.03.022